本文已被:浏览 1913次 下载 4066次
Received:July 07, 2010 Revised:August 04, 2010
Received:July 07, 2010 Revised:August 04, 2010
中文摘要: 结合网络舆情分析的应用需求背景,首先介绍了文本信息的处理,然后探讨了文本聚类中的K-means算法,针对其对初始聚类中心的依赖性的特点,对算法加以改进。基于文档标题能够代表文档内容的思想,改进算法采用稀疏特征向量表示文本标题,计算标题间的稀疏相似度,确定初始聚类中心。最后实验证明改进的K-means 算法提高了聚类的准确度;与基于最大最小距离原则的初始中心选择算法比较,提高了执行效率,同时保证了聚类准确度。
中文关键词: 网络舆情 K-means 算法 文本聚类 稀疏特征向量
Abstract:Combining background application requirement of online public opinion analysis, this paper firstly introduces the processing of text information, and then discusses the K-means algorithm of the text clustering, according to its characteristic that clustering results depend on the centers of initial clustering, and improves it. Based on the thought that text title can express its content, the improved algorithm uses sparse character vector to express text title, calculates the sparse similarity of them and ascertains the centers of initial clustering. The experiments show that the method improves the clustering accuracy. Compared with another algorithm based on the principle of maximum and minimum distance, the improved method heightens the efficiency and ensures the clustering accuracy.
keywords: online public opinion K-means clustering algorithm text clustering sparse character vector
文章编号: 中图分类号: 文献标志码:
基金项目:
引用文本:
汤寒青,王汉军.改进的K-means 算法在网络舆情分析中的应用.计算机系统应用,2011,20(3):165-168,196
TANG Han-Qing,WANG Han-Jun.Application of Improved K-Means Algorithm to Analysis of Online Public Opinions.COMPUTER SYSTEMS APPLICATIONS,2011,20(3):165-168,196
汤寒青,王汉军.改进的K-means 算法在网络舆情分析中的应用.计算机系统应用,2011,20(3):165-168,196
TANG Han-Qing,WANG Han-Jun.Application of Improved K-Means Algorithm to Analysis of Online Public Opinions.COMPUTER SYSTEMS APPLICATIONS,2011,20(3):165-168,196