###
DOI:
计算机系统应用英文版:2011,20(3):98-101
本文二维码信息
码上扫一扫!
日电力负荷的分时段多模型组合预测
(1.江南大学 机械工程学院,无锡 214122;2.浙江师范大学 数理与信息工程学院,金华 321004)
Daily Load Forecasting System with Segmented Multi-Model Combining Forecasting Method
(1.School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China;2.Department of Information Science and Engineering, Zhejiang Normal University, Jinhua 321004, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 2044次   下载 4162
Received:July 07, 2010    Revised:September 20, 2010
中文摘要: 日电力负荷预测是电力市场运营的基本内容。当前大多数预测方法对不同时段往往采用相同的预测模型和算法,而较少考虑不同时段的负荷组成及特征变化。提出了一种新的分时段多模型组合预测方法。根据负荷组成和特征变化,将日96 点负荷分为多个时间段,每个时段内采用多元线性回归、灰色预测、支持向量机和神经网络预测等子模型加权实现多模型组合预测。通过对华东某地市电网日负荷96 点曲线的预测结果显示,该方法效果较好,日预测均方根误差在1.78%以内,能较好地满足实际电力系统的负荷预测要求。
Abstract:Daily load forecasting is a basic role of power market. Most of load forecasting methods use one same model in one day, regardless of the change of load composing and characteristic at different time segments. A new segmented multi-model combining load forecasting strategy was proposed in this paper. According to different load composing and characteristic, 96 points daily load was separated into many time segments. At each time segment, a multi-model combining load forecasting, composed by multivariate linear regression, grey prediction, SVM and neural network forecasting, was used to forecast load. The forecasting results of a city in east China showed that, the MSE forecasting error of 96 points daily load is only about 1.78%. The method can satisfy the request of real power system well.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省自然科学基金(Y1090182)
引用文本:
蔡小华,吕干云.日电力负荷的分时段多模型组合预测.计算机系统应用,2011,20(3):98-101
CAI Xiao-Hua,LV Gan-Yun.Daily Load Forecasting System with Segmented Multi-Model Combining Forecasting Method.COMPUTER SYSTEMS APPLICATIONS,2011,20(3):98-101