###
DOI:
计算机系统应用英文版:2011,20(2):157-160
本文二维码信息
码上扫一扫!
基于W2KPCA-KNN 算法的人体异常行为识别
(浙江工业大学 信息工程学院,杭州 310023)
Abnormal Human Behaviors Recognition Based on W2KPCA-KNN Algorithm
(College of Information Engineering , Zhejiang University of Technology, Hangzhou 310023, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1938次   下载 113
Received:May 23, 2010    Revised:June 28, 2010
中文摘要: 基于视觉的人体异常行为识别在特征提取时通常采用简单的形状运动信息或传统PCA 方法,前者信息量不足而后者忽略了数据中的非线性信息,因此将核主成分分析(KPCA)运用于人体异常行为识别解决了以上问题。针对KPCA 提取异常行为特征时存在的不足,提出了W2KPCA-KNN 算法,即在特征提取和分类两个阶段均进行相应加权运算,在保留行为图像信息的基础上,提高了识别的精度,有效满足了异常行为识别系统的技术要求。通过实验比对可知该算法效果在特征提取和分类方面均优于传统核主成分分析法以及最近邻分类器。
中文关键词: PCA  KPCA  KNN  人体异常行为  加权运算
Abstract:The recognition based on vision to extract features from abnormal human behaviors usually utilize straightforward sharp movement information or traditional PCA methods. The former lacks of information and the latter has ignored nonlinear information in data. Therefore, this paper will use KPCA in recognizing abnormal human behaviors to solve the aforementioned problems. Since KPCA has some defects in extracting feature abnormal behaviors, W2KPCA-KNN algorithm is proposed, which is to do weighting in both feature extraction and classification respectively. While retaining behavioral information in the image, it improves recognition accuracy and satisfies the technical requirements for abnormal behavior recognition system. The experimental comparisons show that this algorithm outperforms traditional KPCA and K-Nearest Neighbor classifier on both feature extraction and classification.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省自然科学基金(20080376)
引用文本:
楼中望,姚明海,瞿心昱,阮涛涛,朱晓明.基于W2KPCA-KNN 算法的人体异常行为识别.计算机系统应用,2011,20(2):157-160
LOU Zhong-Wang,YAO Ming-Hai,QU Xin-Yu,RUAN Tao-Tao,ZHU Xiao-Ming.Abnormal Human Behaviors Recognition Based on W2KPCA-KNN Algorithm.COMPUTER SYSTEMS APPLICATIONS,2011,20(2):157-160