###
DOI:
计算机系统应用英文版:2011,20(2):75-79
本文二维码信息
码上扫一扫!
三种判别分析方法在元音库上的分类
(温州医学院 信息与工程学院,温州 325035)
Classification About Vowel Database Using Discriminant Analysis Methods
(School of Information & Engineering, Wenzhou Medical College, Wenzhou 325035, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1883次   下载 4216
Received:June 08, 2010    Revised:July 09, 2010
中文摘要: 分别用降秩线性判别分析(RRLDA)、降秩二次判别分析(RRQDA)和主成分分析+线性判别分析(PCA+LDA)三种模型对数据进行了分析,并在元音测试数据集上进行了测试。分别画出了这三种模型的误分类率曲线,画出了RRLDA 和PCA+LDA 分别降至二维后的最优分类面。从实验结果中可以发现,RRLDA 模型的实验结果优于PCA+LDA 模型,而RRQDA 的误分类率相当的高,这是因为PCA 在降维过程中仅仅要求数据分散,而忽略了数据的类内和类间的信息。同时,曲线提示RRLDA 在子空间的维数取2 时具有最
中文关键词: 元音    降秩  判别分析  主成分分析
Abstract:The paper analyzes vowel data using reduced-rank linear discriminant analysis (RRLDA), reduced-rank quadratic discriminant analysis (RRQDA) and principal component analysis plus linear discriminant analysis (PCA+LDA). Then it drew some curves of false classification about the three model. A curved surface of the best classification has drawn for RRLDA and PCA+LDA after reduced rank to two dimensions. From the result, it can be conclude that RRLDA is good than PCA+LDA. The false classification of RRQDA is considerably big, because PCA ignores the information of classification about data and only disperses data during reducing rank. Simultaneously these curves prompts RRLDA owning the best generalizing ability when its dimension is 2 in subspace, and PCA+LDA owning the best generalizing ability when its dimension is 4 in subspace, and RRQDA owning the best verify error rate in tenth dimension.
文章编号:     中图分类号:    文献标志码:
基金项目:浙江省教育厅项目(Y200803141)
引用文本:
潘志方,杨峰,邵和鸿.三种判别分析方法在元音库上的分类.计算机系统应用,2011,20(2):75-79
PAN Zhi-Fang,YANG Feng,SHAO He-Hong.Classification About Vowel Database Using Discriminant Analysis Methods.COMPUTER SYSTEMS APPLICATIONS,2011,20(2):75-79