###
DOI:
计算机系统应用英文版:2011,20(1):197-200
本文二维码信息
码上扫一扫!
一种F-scores 和SVM 结合的客户分类方法
(西安理工大学 经济与管理学院,西安 710054)
A Method Combined of Support Vector Machine and F-scores for Customer Classification
(Economics and Management School of Xi’an University of Technology, Xi’an 710054, China)
摘要
图/表
参考文献
相似文献
本文已被:浏览 1846次   下载 4101
Received:May 11, 2010    Revised:June 11, 2010
中文摘要: 为了克服现有客户分类方法在假设前提、准确度、泛化能力等方面的不足,提出了一种F-scores 和SVM算法相结合的客户分类方法,并把该方法应用到银行信用卡客户分类问题中予以验证。实证分析表明:该方法最终的模型验证准确率可达95%以上,学习和分类能力良好。
中文关键词: SVM  F-scores  属性选择  客户分类
Abstract:A method combined of F-scores and support vector machine for customer classification was proposed, which can overcome the shortages of the existing customer classification method such as strict hypothesis, poor generalization ability, low prediction accuracy and low learning rate etc., and was applied to the problem of bank credit card customer classification. Empirical results show the validation accuracies of the final model can achieve 95% or more, which concludes that learning and generalization abilities of this model are excellent.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
段刚龙,黄志文,王建仁.一种F-scores 和SVM 结合的客户分类方法.计算机系统应用,2011,20(1):197-200
DUAN Gang-Long,HUANG Zhi-Wen,WANG Jian-Ren.A Method Combined of Support Vector Machine and F-scores for Customer Classification.COMPUTER SYSTEMS APPLICATIONS,2011,20(1):197-200