###
DOI:
计算机系统应用英文版:2010,19(12):238-241
本文二维码信息
码上扫一扫!
一种基于聚类的文本迁移学习算法
(山西财经大学 信息管理学院 山西 太原 030006)
Transfer Learning Algorithm for Text Classification Based on Clustering
摘要
图/表
参考文献
相似文献
本文已被:浏览 2016次   下载 3843
Received:April 13, 2010    Revised:May 23, 2010
中文摘要: 当现有训练数据过期,而新数据又非常少时,运用迁移学习能够有效提高分类器性能。本文提出一种基于聚类的文本迁移学习算法,给出了算法的主要思想及实现步骤。然后,在中文文本语料库上进行了实验,并与非迁移学习算法进行了比较。实验证明该方法能有效提高分类器性能。
Abstract:Transfer learning can improve the performance of classifier effectively, when the training data are out of date, but the new data are very few. In this paper, we propose a transfer learning algorithm for text classification based on clustering. We describe the main idea and the step of the algorithm. Then have experiment on text corpus of Chinese, and compare the algorithm with transfer-unaware algorithm. The experiments demonstrate that this algorithm significantly outperforms the others.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(60873100)
引用文本:
杜俊卫,李爱军.一种基于聚类的文本迁移学习算法.计算机系统应用,2010,19(12):238-241
.Transfer Learning Algorithm for Text Classification Based on Clustering.COMPUTER SYSTEMS APPLICATIONS,2010,19(12):238-241