本文已被:浏览 1536次 下载 3605次
Received:April 05, 2010 Revised:May 31, 2010
Received:April 05, 2010 Revised:May 31, 2010
中文摘要: 系统规模的逐步扩大和用户兴趣的发展变化给传统协同过滤推荐系统带来了实时性减弱和准确性降低的问题。基于K-Means用户聚类的协同过滤技术虽然能在一定程度上解决这两个问题,算法本身却带有局部最优的缺陷。在保证实时性的前提下,为克服K-Means算法的缺陷,提出使用AntClass蚁群算法对用户聚类。同时提出将用户评分看作数据流,利用金字塔时间框架预处理数据,从而体现用户兴趣随时间的变化。于是,将AntClass蚁群算法和利用金字塔时间框架预处理过的数据流相结合,最终形成文中的AntStream算法。实验表明,AntStream算法不仅改善了传统协同过滤推荐系统的实时性问题,而且更大程度提高了推荐质量。
中文关键词: 电子商务 推荐系统;协同过滤;蚁群聚类;金字塔时间框架
Abstract:Expansion of the scale to the traditional collaborative filtering recommendation systems and changes of users’ interest bring problems of decreased accuracy and real-time responsiveness. Collaborative filtering recommender systems based on clustered users using K-Means Algorithm can solve these two problems in some extent, however, with a local optimum defects. Under the premise of ensuring the real-time responsiveness, AntClass algorithm applied to users is proposed to overcome the shortcomings of K-Means algorithm. This paper also proposed to take the users’ ratings as a data stream, and use the pyramid time frame for data preprocessing, thus it reflects the change of users’ interest with the time. As a result, AntClass algorithm and the data stream filtered by pyramid time frame were combined to form the AntStream algorithm in this article. The experiment result shows that AntStream algorithm has improved not only the real-time responsiveness and also the accuracy to a greater extent.
keywords: E-commerce recommender systems collaborative filtering ant colony clustering pyramidal time frame
文章编号: 中图分类号: 文献标志码:
基金项目:
Author Name | Affiliation |
王卫平 | 中国科学技术大学 管理学院 安徽 合肥 230026 |
寇艳艳 |
Author Name | Affiliation |
王卫平 | 中国科学技术大学 管理学院 安徽 合肥 230026 |
寇艳艳 |
引用文本:
王卫平,寇艳艳.基于AntStream用户聚类的协同过滤推荐系统.计算机系统应用,2010,19(12):180-184
.Collaborative Filtering Recommender Systems Based on Clustered Users Using AntStream Algorithm.COMPUTER SYSTEMS APPLICATIONS,2010,19(12):180-184
王卫平,寇艳艳.基于AntStream用户聚类的协同过滤推荐系统.计算机系统应用,2010,19(12):180-184
.Collaborative Filtering Recommender Systems Based on Clustered Users Using AntStream Algorithm.COMPUTER SYSTEMS APPLICATIONS,2010,19(12):180-184