###
DOI:
计算机系统应用英文版:2010,19(12):155-159
本文二维码信息
码上扫一扫!
Levenberg-Marquardt算法在T-S型模糊RBF神经网络训练中的应用
(湖南大学 电气与信息工程学院 湖南 长沙 410082)
Application of Levenberg-Marquardt Algorithm to Training of T-S Fuzzy Model Based RBF Neural Network
摘要
图/表
参考文献
相似文献
本文已被:浏览 1928次   下载 3754
Received:April 14, 2010    Revised:June 04, 2010
中文摘要: 为了提高T-S型模糊RBF神经网络的训练效率,把Levenberg-Marquardt算法引入到T-S型模糊RBF神经网络的训练过程中,提高了网络训练的收敛速度,减小了训练过程陷入局部极小点的概率,然后基于这种算法推导出T-S型模糊RBF神经网络的快速训练算法,即混合学习算法。最后通过实验验证了这种算法的有效性和实用性。
Abstract:To improve the efficiency of training the T-S fuzzy model based RBF neural network, the Levenberg-Marquardt algorithm is introduced into it, which speeds up the convergence and reduces the probability for the training to get into the local minimum point. Next, a kind of more efficient algorithm, named hybrid learning algorithm,is proposed. At last, the efficiency and practicability of the Levenberg-Marquardt algorithm for the training of the T-S fuzzy model based RBF neural network are tested through an experiment.
文章编号:     中图分类号:    文献标志码:
基金项目:国家自然科学基金(No.60874096)(50704016)
引用文本:
徐奉友,张小刚.Levenberg-Marquardt算法在T-S型模糊RBF神经网络训练中的应用.计算机系统应用,2010,19(12):155-159
.Application of Levenberg-Marquardt Algorithm to Training of T-S Fuzzy Model Based RBF Neural Network.COMPUTER SYSTEMS APPLICATIONS,2010,19(12):155-159