###
DOI:
计算机系统应用英文版:2010,19(10):187-190
本文二维码信息
码上扫一扫!
基于多值分解和多类标学习的分类框架设计
(温州大学 城市学院 浙江 温州 325000)
Framework of Classification Based on Multi-Value Decomposition and Multi-Label Learning
摘要
图/表
参考文献
相似文献
本文已被:浏览 1605次   下载 3338
Received:February 24, 2010    Revised:April 04, 2010
中文摘要: 多值多类标的数据分类是研究一个样本不但同时属于多个类别,而且在某些属性下也可能存在多个取值的问题。提出了一种结合多值分解和多类标学习的多值多类标分类框架(MDML),采用4种不同的多值分解策略,将问题转化为多类标问题,然后利用3种经典的多类标算法进行学习。实验结果表明,MDML与已有的多值多类标决策树算法相比,有效地提高了分类的性能,而且不同的组合方法适用于不同特点的数据集。
Abstract:Classification of multi-valued and multi-labeled data is about a sample which is not only associated with a set of labels, but also with several values that include some attributes. This paper proposes a multi-valued and multi-labeled learning framework that combines multi-value decomposition with multi-label learning (MDML), using four strategies to deal with multi-valued attributes and three classical, multi-label algorithms to learn. Experimental results demonstrate that MDML significantly outperforms the decision tree based method. Meanwhile, combined methods can be applied to various types of datasets.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
沈良忠,陈胜凯,胡捷臻.基于多值分解和多类标学习的分类框架设计.计算机系统应用,2010,19(10):187-190
SHEN Liang-Zhong,CHEN Sheng-Kai,HU Jie-Zhen.Framework of Classification Based on Multi-Value Decomposition and Multi-Label Learning.COMPUTER SYSTEMS APPLICATIONS,2010,19(10):187-190