本文已被:浏览 2118次 下载 2596次
Received:May 25, 2009 Revised:March 21, 2010
Received:May 25, 2009 Revised:March 21, 2010
中文摘要: 提出了一种新的基于模糊粒子群算法的电力变压器故障自动识别方法。首先对基于油中溶解气体分析得到五种关键气体含量数据进行特殊预处理,得到识别四种故障需要的六个关键特征。然后给出了一个新的模糊聚类目标函数,在此基础上,根据已有的故障样本利用粒子群算法得到各类故障的最优聚类中心;并由此计算出各测试样本到各个聚类中心之间的距离以及相应的隶属度,最后识别出样本的变压器故障类型。测试结果显示,该方法能有效诊断识别出变压器高能放电、过热、低能放电和正常状态,精度可达92%。
中文关键词: 故障诊断;模糊粒子群 最优聚类中心;电力变压器
Abstract:A fuzzy particle swarm optimization (PSO) method is applied to fault diagnosis of power transformer for the first time. Content of five diagnostic gases dissolved in oil obtained by dissolved gas analysis (DGA) is preprocessed through a special data processing, and six features are extracted for fuzzy PSO algorithm. Then a new objective function is proposed for fuzzy clustering algorithm. Based on the function, PSO algorithm is trained for get the optimized clustering centers of all fault type. With the optimized clustering centers, the distantance of the testing sample to centers are calculated, and then the the membership degree is abtained. Finally, the four fault types of transformer are identified. The algorithms perform well in the testing, and the correct ratios of fault diagnosis reach an average of 92%.
文章编号: 中图分类号: 文献标志码:
基金项目:浙江省自然科学基金(Y1090182)
Author Name | Affiliation |
ZHU Su-Hang | 金华职业技术学院 信息工程学院 浙江金华 321007 |
LV Gan-Yun | 浙江师范大学 信息学院 浙江 金华321004 |
Author Name | Affiliation |
ZHU Su-Hang | 金华职业技术学院 信息工程学院 浙江金华 321007 |
LV Gan-Yun | 浙江师范大学 信息学院 浙江 金华321004 |
引用文本:
朱苏航,吕干云.基于模糊粒子群算法的变压器故障自动识别①.计算机系统应用,2010,19(8):242-246
ZHU Su-Hang,LV Gan-Yun.Fault Diagnosis of Power Transformer Based on Fuzzy PSO Algorithm.COMPUTER SYSTEMS APPLICATIONS,2010,19(8):242-246
朱苏航,吕干云.基于模糊粒子群算法的变压器故障自动识别①.计算机系统应用,2010,19(8):242-246
ZHU Su-Hang,LV Gan-Yun.Fault Diagnosis of Power Transformer Based on Fuzzy PSO Algorithm.COMPUTER SYSTEMS APPLICATIONS,2010,19(8):242-246