###
DOI:
计算机系统应用英文版:2010,19(5):100-103
本文二维码信息
码上扫一扫!
支持交叉营销的金融产品客户数据挖掘
(浙江工业大学 软件学院 浙江 杭州 310023)
Customer Data Mining for Supporting Cross-Marketing of Financial Products
摘要
图/表
参考文献
相似文献
本文已被:浏览 1908次   下载 3793
Received:September 07, 2009    Revised:October 21, 2009
中文摘要: 首先比较了DBSCAN,CLIQUE,CLARANS,K-means 和 X-means等聚类算法,接着选用X-means聚类算法建立了金融产品客户细分模型,然后结合关联强度分析,设计了支持交叉营销的金融产品客户数据挖掘系统,并给出了一个系统使用示例。
Abstract:This paper makes a comparison between Clustering algorithms such as DBSCAN, CLIQUE, CLARANS, K-means and X-means. The X-means clustering algorithm is selected to establish a customer segmentation model for financial products marketing. Based on relational analysis of financial products, a financial products customer data mining application system is designed to support the cross-marketing of financial products. In the end, a use case is given to illustrate the application of the system.
文章编号:     中图分类号:    文献标志码:
基金项目:
引用文本:
黄洪,洪毅.支持交叉营销的金融产品客户数据挖掘.计算机系统应用,2010,19(5):100-103
HUANG Hong,HONG Yi.Customer Data Mining for Supporting Cross-Marketing of Financial Products.COMPUTER SYSTEMS APPLICATIONS,2010,19(5):100-103