###
DOI:
计算机系统应用英文版:2010,19(4):62-65
本文二维码信息
码上扫一扫!
基于访问兴趣的Web用户聚类方法
(中南大学 信息科学与工程学院 湖南 长沙 410083)
Web User Clustering Based on Interest
摘要
图/表
参考文献
相似文献
本文已被:浏览 1951次   下载 3469
Received:July 12, 2009    Revised:August 30, 2009
中文摘要: 基于Web日志的信息挖掘具有重要的意义,比如识别兴趣相似的客户群体有利于实现推荐和个性化服务。采用了多元线性回归分析用户浏览行为,直接对兴趣相似矩阵进行λ截聚类,最后通过计算项与类的连接强度来调整聚类结果。实验结果证明了该算法具有较高的准确率和良好的扩展性。
Abstract:Data mining based on Web logs is of great significance. For instance, it can discover groups of people with similar interests and facilitate recommendation and personal service. A new clustering method based on Web users' interests regressively analyzes users' behaviors, partitions the interesting matrix with a threshold λ, and finally relocates some elements of clusters based on the joint strength between an element and a cluster. The favorable precision and scalability of the algorithm are studied through the experiments.
文章编号:     中图分类号:    文献标志码:
基金项目:湖南省科技计划基金(2006JT1040)
引用文本:
费洪晓,覃思明,李文兴,李钦秀,董馨.基于访问兴趣的Web用户聚类方法.计算机系统应用,2010,19(4):62-65
FEI Hong-Xiao,QIN Si-Ming,LI Wen-Xing,LI Qin-Xiu,DONG Xin.Web User Clustering Based on Interest.COMPUTER SYSTEMS APPLICATIONS,2010,19(4):62-65