E-mail: csa@iscas.ac.cn http://www.c-s-a.org.cn Tel: +86-10-62661041

贝叶斯优化的表面缺陷超分辨率检测①

张 睿^{1,2}, 任文宇¹, 傅留虎²

¹(太原科技大学 计算机科学与技术学院,太原 030024) ²(山西省机电设计研究院有限公司,太原 030009) 通信作者:张 睿, E-mail: zhangrui@tyust.edu.cn

摘 要: 金属表面缺陷待测样本往往存在分辨率低、缺陷边界模糊、缺陷密集、缺陷目标小的情况, 同时, 构建的 检测模型存在大量的超参数需要手动调参, 缺乏模型自适应调参能力, 本文提出一种基于贝叶斯优化的表面缺陷超 分辨率检测算法. 通过设计精细化分层结构, 丰富主干网络特征图的感受野, 增强对高低频信息的提取, 重建出边缘 纹理清晰的高分辨率图像; 通过构建瓶颈残差密集结构, 丰富主干特征提取网络的浅层特征和深层特征, 提升模型 对小目标和密集目标的分类和定位能力; 通过贝叶斯优化算法以较小的时间代价自适应优化检测模型的关键超参 数. 实验表明, 本文对 NEU-DET 数据集中 6 类金属表面缺陷的 *mAP*_{0.5} 可达 0.782, 同时检测速度可达 102 f/s, 优于 其他检测算法.

关键词:缺陷检测;超分辨率;瓶颈残差密集块;贝叶斯自优化策略

引用格式:张睿,任文字,傅留虎.贝叶斯优化的表面缺陷超分辨率检测.计算机系统应用,2023,32(11):193-202. http://www.c-s-a.org.cn/1003-3254/9267.html

Surface Defect Super-resolution Detection Based on Bayesian Optimization

ZHANG Rui^{1,2}, REN Wen-Yu¹, FU Liu-Hu²

¹(College of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China) ²(Shanxi Electromechanical Design and Research Institute Co. Ltd., Taiyuan 030009, China)

Abstract: The samples to be tested for metal surface defects are often characterized by low resolution, fuzzy defect boundaries, dense defects, and small defect targets. At the same time, the constructed detection model has a large number of hyperparameters that need to be manually adjusted and lacks the adaptive parameter adjustment ability. In this study, a surface defect super-resolution detection algorithm based on Bayesian optimization is proposed. Through the design of fine layered structure, the receptive field of the backbone network feature map is enriched; the extraction of high-low frequency information is enhanced; the high-resolution image with clear edge texture is reconstructed. By constructing the bottleneck residual dense structure, the shallow and deep features of the backbone feature extraction network are enriched, and the classification ability and the localization ability of the model for small targets and dense targets are improved. The key hyperparameters of the detection model are optimized adaptively by a Bayesian optimization algorithm with low time cost. Experiments show that $mAP_{0.5}$ for six types of metal surface defects in the NEU-DET dataset can reach 0.782, and the detection speed can reach 102 f/s, which is superior to other detection algorithms.

Key words: defect detection; super-resolution; bottleneck residual dense block; Bayesian self-optimization strategy

基金项目:山西省基础研究计划(20210302123216);山西省机械产品质量司法鉴定中心企业委托项目(2021168);山西省研究生教育改革研究课题(2021 YJJG244);太原科技大学研究生联合培养示范基地项目(JD2022004);太原科技大学研究生教育创新项目(SY2022064) 收稿时间: 2023-04-07;修改时间: 2023-05-11;采用时间: 2023-05-15; csa 在线出版时间: 2023-08-09 CNKI 网络首发时间: 2023-08-10

金属材料在工业制造中应用较为广泛,但金属在 加工过程中往往会因各种因素导致金属表面出现裂 纹、斑块、麻点面、压痕、刮痕等不同程度和不同种 类的缺陷,这些表面缺陷不仅影响金属外观,严重时还 会导致金属材料断损,从而发生一些事故,因此金属表 面缺陷需要在生产过程中准确地检测出来.

随着计算机视觉领域中基于深度学习的目标检测 算法快速发展,以其检测精度高、检测速度快等优势 为金属表面缺陷的检测批量化、高效率检测提供了新 思路新方法. 王道累等人[1] 提出一种基于级联孪生密 集网络的表面缺陷检测方法,加入空洞空间金字塔池 化结构获取不同采样率的特征图捕获多尺度信息,融 合浅层特征和高层复杂特征增强分类准确率, 解决金 属表面缺陷实时检测中存在的缺陷检测精度不高以及 难以定位等问题;李维刚等人^[2]对 YOLOv3 模型进行 改进, 使用加权 K-means 聚类算法优化先验框参数, 融 合浅层特征与深层特征,提高模型对带钢表面缺陷检 测精度; 王一等人^[3] 在 YOLOv5 原模型加入 SE 注意 力模块,减少无用特征干扰,同时用 Ghost 卷积块替换 主干网络中常规卷积,提高了对金属工件表面缺陷检 测的精度; Wang 等人^[4] 在 YOLOv4 模型颈部加入 SAF 注意力模块增强路径间和跨层特征融合,使用马赛克 增强防止图像过度参与训练; Xie 等人^[5] 提出一种基于 特征增强 YOLO 的表面缺陷检测算法用于实际工业, 为了高效检测,通过结合深度可分离卷积和密集连接 降低模型的参数量,为了提高检测精度,提出了一种改 进的特征金字塔网络,以增强多尺度检测的空间位置 相关性.可以看出,目前对于金属表面缺陷检测的研究 取得了一定成就. 然而现有研究存在一些问题需要进 一步完善: (1) 工业生产中采集到的金属表面缺陷图像 存在分辨率低的情况,直接使用原始低分辨率缺陷图 像进行检测会造成目标难检、误检及漏检问题.(2)现 研究的主干网络提取特征尺度较单一,不同尺度浅层 特征和深层特征无法均衡,小目标或密集目标的分类 或定位能力较差.(3)现阶段的目标检测超参数优化多 依靠研究人员的主观经验, 需要较强的专业经验, 通过 大量耗时的"试错"实验进行优化以期达到较好的效果, 缺乏模型的自适应性和存在模型泛化性差的问题.

综合上述问题,本文提出一种基于贝叶斯快速优化的金属表面缺陷超分辨率检测算法.总结本文贡献有3点.

194 软件技术•算法 Software Technique•Algorithm

(1)为有效降低低分辨率金属表面图像对缺陷检测效率的影响,设计了一种多层融合超分辨率重建模型,将 ESRGAN 和精细化分层结构有效融合,丰富主干特征提取网络特征图的感受野,在实现缺陷图像的超分辨率重建的同时提高重建图像边缘纹理清晰度.

(2)为有效提高检测模型对小目标和密集目标的 分类和定位能力,设计了一种瓶颈残差密集结构,丰富 主干特征提取网络的位置信息和语义信息.

(3) 针对模型人工调参主观性强、自学习能力薄 弱等问题, 论文以缺陷检测模型均值平均精度为优化 目标, 采用贝叶斯优化算法对初始学习率、损失系 数、IOU 阈值等 20 个模型超参数进行自适应寻优, 提 高检测模型自优化能力和模型泛化能力.

1 相关工作

1.1 超分辨率重建

金属表面缺陷数据集分辨率较低,直接使用原始 图像进行目标检测会出现目标难检、误检和漏检的情况.随着深度学习和卷积神经网络的快速发展,基于深 度学习的超分辨率也得到了积极的探索和研究.相比 传统基于插值和基于重构的超分辨率重建方法,基于 深度学习的超分辨率可以用深度模型自动提取更有表 达能力的图像特征,学习低分辨率图像 *I*^{LR} 和高分辨率 图像 *I*^{HR} 之间的映射关系 *F*₀,如式 (1),重建出更加逼真 的图像纹理细节^[67].

$$\theta = \arg\min\frac{1}{N}\sum_{i=1}^{N} L(F_{\theta}(I_i^{\text{LR}}), I_i^{\text{HR}})$$
(1)

其中, $\theta = \{w^1, w^2, \dots, w^p, b^1, b^2, \dots, b^p\}$ 表示 p 个卷积层 的权重和偏置, N 表示低分辨率图像 I^{LR} 和高分辨率图 像 I^{HR} 训练样本对数, L 表示最小化重建图像 $F_{\theta}(I^{LR})$ 和高分辨率图像 I^{HR} 的损失函数.

一些研究者对表面缺陷图像的超分辨率重建方法 进行了积极的研究. 刘孝保等人^[8]构建一种基于超分 辨率特征融合的数据扩增模型解决表面细微缺陷模型 构建困难、图像特征不明显和工业应用困难的问题; Cheng 等人^[9]提出一种缺陷感知生成对抗网络框架, 通过分割缺陷图像的感知注意力图增强生成高分辨率 图像缺陷区域的可见性; Akhyar 等人^[10]用生成对抗网 络 ESRGAN 预处理原始钢铁表面缺陷图像, 生成具有 更丰富的边缘轮廓缺陷图像, 提高了对缺陷检测的精度.

1.2 YOLOv5 检测模型

金属工件加工产线生产节奏快、检测精度要求高 以及硬件资源有限等因素都对算法的实时性提出了挑 战. YOLOv5 自 2020 年 6 月发布 v1.0 以来, 到如今最 新 v6.2 版本, 经过了 9 个版本的更新, 受到了较多研究 者的关注. YOLOv5 是当前目标检测模型中能够很好 地平衡检测速度和准确率的模型之一, 其模型参数量 只有 7.04M, 这为嵌入移动设备实现轻量化提供了良 好条件^[11].

YOLOv5 模型结构主要包括: 输入端、主干网络、颈部、预测端, 其中输入端应用了 Mosaic 数据增强技术、自适应锚框计算以及自适应图片缩放技术; 主干网络主要由 CBS 结构、C3 模块提取特征和 SPPF 提升模型感受野; 颈部由 FPN+PAN 的结构设计进行 特征融合; 预测端预设了由 K-means 聚类数据集得到 9 种不同尺寸的 anchor, 3 个为一组, 分别预测大、中、 小 3 种尺度的目标.

2 方法

2.1 多层融合超分辨率重建模型

多层融合超分辨率重建模型主要由主干网络增强 型超分辨率生成对抗网络 (enhanced super-resolution generative adversarial network, ESRGAN)^[12]、精细化分 层结构两部分组成,结构如图 1 所示. 残差密集块 (residual-residual dense block, RRDB) 移除了超分辨率 网络经常使用的 BN 层,防止重建图像产生伪影,同时 也能缩减网络的计算量.图 1 中 β 为残差缩放系数,即 通过在 0–1 之间乘以一个常数来改变密集块支路的权重.

图1 多层融合模型图

为了进一步提高主干特征提取网络不同尺度感 受野的特征表示,本文在主干网络设计了精细化分层 支网络,如图 2 所示,精细化分层结构的输入特征图首 先均分为 4 个通道的特征图 *X_i*,然后每个通道经过 3×3 卷积核分别提取来自本通道的特征图和上一层通 道的特征图,卷积之后每一层通道得到 4 个输出特征 *Y_i*,每层的 *X_i* 和 *Y_i*存在如下关系:

图 2 精细化分层模块

最后,在通道维度上拼接所有层的输出特征并得 到重组特征 Output,重组特征使用 1×1 卷积核固定通 道数,使模块输入通道数与输出通道数保持一致.精 细化分层模块每一层特征子块 *Y_i*都能够学习来自 *Y_{i-1}* 的特征,可从输入特征中获取更多的通道信息,有助 于丰富特征图的感受野,增强对特征图高低频信息的 提取.

2.2 基于多层融合超分辨率重建的 YOLOv5-BRDB

YOLOv5 在很多领域中取得了较好的检测结果, 但其检测背景复杂的多种尺度小目标和密集目标极易 发生漏检或错检的情况. 主干特征提取网络 Backbone 浅层特征包含丰富的位置信息,有利于目标的定位,而 深层特征包含较多的语义信息,有利于目标的分类.为 进一步丰富主干特征提取网络的位置信息和语义信息, 本文构建了基于瓶颈残差密集块的 YOLOv5 (YOLOv5 based on bottleneck residual dense block, YOLOv5-BRDB) 检测模型,其结构如图 3 所示,首先原始的低分辨率缺 陷图像 LR 经过多层融合超分辨率重建模型处理成高 分辨率图像 HR, 尺寸大小为 800×800×3 的 HR 作为

YOLOv5-BRDB 的输入图像. Backbone 的 BRDB 模块 通过瓶颈结构 (Bottleneck) 中的第 1 个 1×1 卷积核固 定输入特征的维度, 避免使用普通卷积块使密集连接 结构因后面卷积块特征输入增加引起 BRDB 模块计算 量爆炸增长的缺点, 在 BRDB 模块中的每个 Bottleneck 结构的输出特征满足以下关系:

$$T_{i} = \begin{cases} F_{i}(A), & i = 1\\ F_{i}\left(\sum_{t=1}^{i-1} F_{t}(T_{t-1})\right), \ 1 < i \le 5 \end{cases}$$
(3)

其中, T_i 表示第 i 个 Bottleneck 模块的输出特征, $F_i(\cdot)$ 表示第 i 个 Bottleneck 卷积的卷积过程, A 表示第 1 个 Bottleneck 的输入特征, \sum 表示特征使用 concat 拼接.

图 3 基于多层融合模超分辨率重建模型的 YOLOv5-BRDB 缺陷检测模型

从式(3)中可以发现 BRDB 结构可获得来自不同 Bottleneck 的不同尺度、不同深度特征,增强主干网 络 Backbone 对浅层位置特征和深层分类特征的提取 能力,提升模型对金属表面缺陷中的小目标和密集目 标的检测准确率.

2.3 贝叶斯算法优化 YOLOv5-BRDB 超参数

贝叶斯优化算法^[13-15] 是一种有效的全局优化算法, 广泛应用于机器学习、神经网络架构搜索、元学 习等领域. 在深度学习领域中, 超参数的取值影响着 模型的性能, 现有模型超参数的优化多依靠开发人员

196 软件技术•算法 Software Technique•Algorithm

的主观经验, 需要专业的调参经验和耗时的"试错"使 模型达到较好的效果. 一些研究者使用群智能优化算 法优化深度模型的超参数, 但深度模型评估一次需要 较高的时间和计算资源代价, 而贝叶斯优化算法能够 根据未知目标函数学习先验知识更新评估位置, 相比 群智能优化算法更高效找到深度模型的最优超参数 组合.

贝叶斯优化算法利用代理模型拟合计算代价昂贵 的真实的目标函数 (即 YOLOv5-BRDB),并根据采集 函数主动选择最具"潜力"的点作为下一个评估点 (即 YOLOv5-BRDB 的超参数),从而避免了不必要的采样, 其中贝叶斯优化算法的优化过程用到了贝叶斯定理:

2023年第32卷第11期

$$p(f|D_{1:t}) = \frac{p(D_{1:t}|f)p(f)}{p(D_{1:t})}$$
(4)

其中,f表示目标函数; $D_{1:t} = \{(x_1, y_1), (x_2, y_2), \dots, (x_3, y_3)\}$ 表示已观测集合; x_t 表示决策向量, $y_t = f(x_t) + \varepsilon_t$ 表示 观测值, ε_t 表示观测误差; $p(D_{1:t}|f)$ 表示 y 的似然分布; p(f)表示先验概率分布,即对评估代价较大的目标函数 状态的假设; $p(D_{1:t})$ 表示边缘似然分布; $p(f|D_{1:t})$ 表示 f的后验概率分布,描述已观测值对先验分布修正后目 标函数的置信度.

代理模型和采集函数是贝叶斯优化算法的两个核 心组成部分,概率代理模型包含先验概率模型和观测 模型,两者分别可视为式(4)中的*p*(*f*)和*p*(*D*_{1:*t*}*f*).更新 概率代理模型表示后验分布*p*(*f*|*D*_{1:*t*})得到了更多的目 标函数的分布信息.采集函数用于选择下一个评估点.

本文构建的适应度函数即贝叶斯优化算法的目标 函数,为了有较高的均值平均精度,本文以10%权值 *mAP*_{0.5}和90%权值*mAP*_{0.5:0.95}之和作为适应度函数 *fitness*,在表1给定超参数的搜索范围内,贝叶斯优化 算法搜寻使*fitness*达到最大值的一组超参数解,*fitness* 表达式如下:

$$fitness = 0.1 \times mAP_{0.5} + 0.9 \times mAP_{0.5:0.95}$$
(5)

其中, mAP_{0.5}、mAP_{0.5:0.95}分别表示阈值 IOU=0.5 和 IOU 步长 0.05 从 0.5 到 0.95 的均值平均精度.

为了自适应寻优 YOLOv5-BRDB 超参数,设计了 算法 1.

算法 1. 贝叶斯算法优化 YOLOv5-BRDB 模型超参数					
输入 参数 输出	x: 训练集记为 D _p , 验证集记为 D _p ; YOLOv5-BRDB 需要优化的超 数 X; N 为最大迭代次数. 1: 适应度值 fitness 及超参数最优值 v _{opt} .				
Initi	alization: 随机产生初始化点				
1 while $t \le N$:					
2	最大化采集函数选择下一个评估点 <i>x₁=argmax_{x∈x}α(x)</i> ;				
3	训练模型得到模型参数 $m_x \leftarrow A(x_t, D_t);$				
4	在验证集上计算式 (5) 适应度值 fitness=A(m _x , D _v);				
5	if <i>fitness</i> ≥0.45:				
6	结束算法;				
7	end if				
8	更新高斯代理模型及最优超参数值 vopt;				
9	<i>t=t</i> +1;				
10 e	nd while				

11 return fitness 和 vopt.

3 实验分析

3.1 实验环境及数据集

金属表面缺陷超分辨率重建和检测的实验平台是 64 位的 Windows 10, 学习框架 PyTorch, CPU 配置 Intel(R) Core(TM) i5-9400F CPU @ 2.90 GHz, 内存配 置 16 GB, 显卡配置 NVIDIA GeForce RTX 2060 SUPER.

本文对 GC10-DET 钢带缺陷数据集双三次插值退 化为低分辨率数据,将 GC10-DET 原始图像和退化图 像分别作为高分辨率图像和低分辨率图像训练多层融 合超分辨率模型,其中 GC10-DET 划分为1836 张训练 集,229 张验证集及 229 张测试集. 然后用训练好的多 层融合超分辨率模型对东北大学提供的 NEU-DET 钢 带裂缝缺陷进行放大因子为4 的超分辨率重建,最后 用 YOLOv5-BRDB 对重建好的 NEU-DET 数据集进行 金属表面缺陷检测,其中 NEU-DET 划分为1440 张训 练集、180 张验证集和180 张测试集.

3.2 评价指标

金属表面缺陷超分辨率重建质量客观评估有峰值 信噪比 (peak signal-to-noise ratio, *PSNR*) 和结构相似 度 (structural similarity, *SSIM*). *PSNR* 单位是分贝 (dB), 值越大表示重建质量越好^[16].

$$PSNR = 20\log_{10}\left(\frac{P_{\text{max}}}{\sqrt{MSE}}\right) \tag{6}$$

其中, P_{max} 表示图像中像素最大值, MSE 为图像的均 方差.

SSIM 将图像的组成分为亮度、对比度和结构,并 用均值估计亮度,标准差估计对比度、协方差估计结 构,是目前超分辨率领域最常用的评估图像失真的指 标之一,其值越大表示重建质量越好,数学表达式如下:

$$SSIM = \frac{(2\mu_X\mu_{\hat{X}} + C_1)(2\sigma_{X\hat{X}} + C_2)}{(\mu_X^2\mu_{\hat{X}}^2 + C_1)(\sigma_X^2\sigma_{\hat{X}}^2 + C_2)}$$
(7)

其中, μ_X 、 $\mu_{\hat{X}}$ 分别表示原图像 X 和 \hat{X} 重建图像的均值. $\sigma_{X\hat{X}}$ 表示 X 和 \hat{X} 的协方差. σ_X^2 、 $\sigma_{\hat{X}}^2$ 分别表示 X 和 \hat{X} 的方 差. C_1 和 C_2 为常数.

感知图像块相似度 (perceptual image patch similarity, LPIPS) 和感知度 (perceptual index, PI) 辅助评估 图像质量. LPIPS 是通过学习图像 patch 的相似度来评 价图像质量, PI 是通过非参考图像度量指标 Ma 和 NIQE 来评价图像质量, 而 LPIPS 和 PI 值越低, 表示图像边 缘纹理细节越丰富, 图像质量越好^[17]. PI 计算公式如下:

$$PI = \frac{1}{2}((10 - Ma) + NIQE)$$
(8)

金属表面缺陷检测性能可用精确率 (precision, p)、 召回率 (recall, r)、平均精度 (average precision, AP) 和 平均精度均值 (mean average precision, mAP) 这 4 个指 标评估[18]. 模型预测框和人工标注的真实框无法完全 一致,根据匹配结果可分为:真正例 (true positive, TP)、 真反例 (true negative, TN)、假正例 (false positive, FP) 和假反例 (false negative, FN).

精确率表示预测正确的正样本占所有预测为正样 本的比例,反映了模型的分类能力.

$$p = \frac{TP}{TP + FP} \tag{9}$$

召回率表示预测正确的正样本占所有真实正样 的比例,反映了模型的检测能力.

$$r = \frac{TP}{TP + FN} \tag{10}$$

平均精度是以精确率为横坐标, 召回率为纵坐标 围成 P-R 曲线的面积, 计算公式如下:

$$AP = \int_0^1 p(r)dr \tag{11}$$

均值平均精度是评估模型综合性能最重要的一个 指标,具体表示 C 个缺陷类别的平均精度,计算公式 如下:

$$mAP = \frac{\sum_{i=1}^{C} AP_i}{C}$$
(12)

金属表面缺陷检测模型实时性评估可用 FPS, FPS 表示每秒传输的帧数,计算公式如下

$$FPS = \frac{1}{latency} \tag{13}$$

其中, latency 表示模型前向传播时间 (预处理时间、推 理时间和后处理时间之和),单位是 s.

3.3 基于贝叶斯优化的超参数自适应寻优结果

实验以式 (5) 适应度函数为优化目标, 寻找 YOLOv5-BRDB 中 20 个关键超参数最优组合. 鉴于贝叶斯优化 算法评估一次 YOLOv5-BRDB 需要数个小时,评估代 价较大,本文设置 YOLOv5-BRDB epochs为 300,贝叶 斯优化算法迭代次数 50, 同时设置早停机制当 fitness≥ 0.45 终止算法. 图 4 是适应度函数值随着迭代次数变 化曲线,在迭代次数内,贝叶斯优化算法的探索和开发

198 软件技术•算法 Software Technique•Algorithm

较为平衡,逐步向最优适应度值靠近,表1是超参数的 寻优范围和最优值.

超参数	范围	最优值
lr0	[10E–5, 0.1]	0.013996
lrf	[0.01, 1]	0.020526
momentum	[0.6, 0.98]	0.647074
weight_decay	[0, 0.001]	0.000909
warmup_epochs	[0, 5]	3
warmup_momentum	[0, 0.95]	0.910152
warmup_bias_lr	[0, 0.2]	0.100819
box	[0.02, 0.2]	0.035449
cls	[0.2, 4]	0.469695
cls_pw	[0.5, 2]	1.970076
obj	[0.2, 4]	0.330334
obj_pw	[0.5, 2]	1.478280
iou_t	[0.1, 0.7]	0.536596
anchor_t	[2, 8]	5.991 129
hsv_h	[0, 0.1]	0.066167
hsv_s	[0, 0.9]	0.002809
hsv_v	[0, 0.9]	0.173768
scale	[0, 0.9]	0.790272
fliplr	[0, 1]	0.221771
mosaic	[0, 1]	0.773 895

注:最优值小数点后保留6位

图 5 是 YOLOv5-BRDB 超参数优化前后分别设 置 epochs 为 500, 准确率、召回率、mAP_{0.5}、mAP_{0.5:0.95} 对比的条形图.由于精确率和召回率呈反相关,故优化 后比优化前的精确率低, 召回率优化前相比优化后提升 4.58%, mAP05 优化前相比优化后提升 3.07%, mAP05:095 优化前相比优化后提升10.34%,验证了本文贝叶斯优 化算法的有效性.

3.4 多层融合超分辨率重建模型实验

本实验对 NEU-DET 数据集进行了放大因子为 4的超分辨率处理.表2对比了多层融合超分辨率重建 模型与其他超分辨率模型的 PSNR、SSIM、LPIPS、 PI 指标. PSNR、SSIM、LPIPS 和 PI 均优于其他超分 辨率重建算法,表明本文多层融合超分辨率重建模型 重建的图像质量更高.

图 5 寻优前后精确率, 召回率, mAP_{0.5}, mAP_{0.5:0.95} 变化

表 2 在 NEU-DET 验证集上多层融合超分辨率模型与其他 模型性能对比

模型	PSNR (dB)↑	$SSIM\uparrow$	LPIPS↓	PI↓
EnhanceNet	27.732	0.756	0.203	3.486
CX	28.339	0.758	0.196	3.567
SRGAN	28.568	0.763	0.172	3.241
RankSRGAN	29.251	0.768	0.154	3.124
ESRGAN	29.998	0.766	0.135	2.986
EUSR	30.263	0.782	0.168	4.582
PPON	30.524	0.786	0.126	2.901
本文	30.932	0.788	0.101	2.825

注:↑表示值越高越好,↓表示值越低越好.黑色加粗字体表示最优

3.5 贝叶斯优化的表面缺陷超分辨率检测实验

本实验在小样本数据集下进行金属表面缺陷模型的训练及检测, batchsize 大小的设置影响模型的最终训练结果. 图 6 是 batchsize 分别设置 4、8、16 时, 模型训练 500 次的 *mAP*_{0.5} 变化曲线. *mAP*_{0.5} 值随着 batchsize 变大而变小, 两者在小样本金属表面缺陷数 据集下呈负相关, 故本文设置 batchsize 为 4.

表 3 比较了原模型 YOLOv5、改进模型 YOLOv5-BRDB、YOLOv5-BRDB+多层融合超分辨率重建模型 在 6 类金属表面缺陷下的精确率 (precision) 和 *mAP*_{0.5}. 在 crazing 缺陷检测中, YOLOv5-BRDB 相比 YOLOv5-精确率提升 30.74%, *mAP*_{0.5} 提升 33.77%, YOLOv5-BRDB+多层融合超分辨率重建模型相比 YOLOv5-BRDB 精确率提升 13.64%, *mAP*_{0.5} 提升 19.92%; 在 inclusion 缺陷检测中, YOLOv5-BRDB 相比 YOLOv5

精确率提升 20.94%, mAP0 5 提升 2.59%, YOLOv5-BRDB+多层融合超分辨率重建模型相比 YOLOv5-BRDB 精确率提升 1.46%, mAP05 提升 2.64%; 在 patches 缺陷检测中, YOLOv5-BRDB 相比 YOLOv5 精 确率提升 7.5%, mAP_{0.5} 提升 1.38%, YOLOv5-BRDB+ 多层融合超分辨率重建模型相比 YOLOv5-BRDB 精 确率提升 1.08%, mAP05 提升 2.05%; 在 pitted_surface 缺陷检测中, YOLOv5-BRDB 相比 YOLOv5 精确率提 升 2.04%, mAP05 下降 0.11%, YOLOv5-BRDB+多层融 合超分辨率重建模型相比 YOLOv5-BRDB 精确率提 升 1.41%, mAP05 提升 1.49%; 在 rolled_in_scale 缺陷 检测中, YOLOv5-BRDB 相比 YOLOv5 精确率提升 12.19%, mAP05 提升 11.92%, YOLOv5-BRDB+多层融 合超分辨率重建模型相比 YOLOv5-BRDB 精确率提 升 3.23%, mAP₀₅ 提升 3.11%; 在 scratches 缺陷检测中, YOLOv5-BRDB 相比 YOLOv5 精确率提升 0.87%, mAP05 提升 5.49%, YOLOv5-BRDB+多层融合超分辨 率重建模型相比 YOLOv5-BRDB 精确率提升 2.1%, mAP05 提升 1.17%. 综合以上分析, 验证了 YOLOv5-BRDB 和 YOLOv5-BRDB+多层融合超分辨率重建模 型的有效性.

图 6 不同 batchsize 大小下 mAP_{0.5} 曲线

表 3

模型改进前后各类缺陷精度及均值平均精度变化 (%)

					YOL	Ov5-
	YOLOv5		YOLOv5-BRDB		BRDB+多层融	
缺陷类型					合超分辨	率重建
				模型		
	Precision	$mAP_{0.5}$	Precision	$mAP_{0.5}$	Precision	$mAP_{0.5}$
crazing	48.8	37.9	63.8	50.7	72.5	60.8
inclusion	67.8	81.1	82.0	83.2	83.2	85.4
patches	77.2	87.2	83.0	88.4	83.9	90.2
pitted_surface	83.5	87.3	85.2	87.2	86.4	88.5
rolled_in_scale	60.7	60.4	68.1	67.6	70.3	69.7
scratches	80.2	89.2	80.9	94.1	82.6	95.2

图 7 是 YOLOv5-BRDB 在验证集上训练 500 次 预测框损失、分类损失、置信度损失曲线.3 类损失曲 线中, YOLOv5-BRDB 相比 YOLOv5 更平滑, 鲁棒性 更好. 预测框损失和置信度损失曲线中, YOLOv5-BRDB 相比 YOLOv5 损失值更低, 说明预测框和标注框更接 近, 可信度更高. 其中分类损失曲线波动较大的原因可 从图 8 YOLOv5-BRDB+多层融合超分辨率重建模型 的混淆矩阵分析, crazing、inclusion、pitted_surface、 rolled_in_scale 这 4 类缺陷与背景相近, 易被识别为背 景, 故分类损失曲线波动较大.

图 7 预测框、分类、置信度损失函数

200 软件技术•算法 Software Technique•Algorithm

图 8 是 YOLOv5-BRDB+多层融合超分辨率重建 模型的混淆矩阵,水平轴表示真实的缺陷类别,垂直 轴表示预测的缺陷类别, CR 表示 crazing, IN 表示 inclusion, PA 表示 patches, PS 表示 pitted_surface, RI 表示 rolled_in_scale, SC 表示 scratches, BG 表示背 景. 图中对角线表示正确分类的比例,底部行表示错误 将缺陷分类为背景的比例,右侧列表示错误将背景分 类为缺陷的比例. 图 8 中底部水平行 CR、IN、PS、 RI 值较大,表示这 4 种缺陷被分类为背景的比例较大; 右侧垂直列 CR、IN、PA、PS、RI、SC 值较大,表示 背景被分类这 6 类缺陷的比例较大;分析是由于 NEU-DET 数据集类间差距小、类内差距大、缺陷与背景相 近导致.

图 8 YOLOv5-BRDB+多层融合模型混淆矩阵

表 4 对比了 YOLOv5-BRDB 与 Faster RCNN^[19], YOLOv3^[20], YOLOv5 和 2022 年最新 YOLOv7-tiny^[21] 在 NEU-DET 数据集上的综合检测性能. YOLOv5-BRDB 相比 YOLOv7-tiny 参数量稍大, 但是 *mAP*_{0.5} 较 YOLOv5 提升 4.55%, *mAP*_{0.5:0.95} 较 YOLOv5 提升 2.42%, FPS 较 YOLOv5 提升 22.51%; *mAP*_{0.5} 较 YOLOv7-tiny 提升 2.62%, *mAP*_{0.5:0.95} 较 YOLOv7-tiny 提升 2.42%, FPS 较 YOLOv7-tiny 提升 132.76%, 验证 YOLOv5-BRDB 有更高的检测精度和更快的检测速度.

表 4	本文检测算法与其他检测算法性能对比
1	个人世际并否 了八世世的并召任他内

模型	$mAP_{0.5}$	mAP _{0.5:0.95}	Param (MB)	FPS
Faster RCNN	0.677	0.372	209	23
YOLOv3	0.682	0.375	162	55
YOLOv5	0.748	0.398	7.03	83
YOLOv7-tiny	0.762	0.398	6.02	44
YOLOv5-BRDB	0.782	0.402	6.82	102

图 9 是 YOLOv5、YOLOv7-tiny、YOLOv5-BRDB 这 3 种模型对 6 种缺陷: crazing, inclusion, patches, pitted_surface, rolled_in_scale, scratches 的检测结果对 比, YOLOv5-BRDB 相比 YOLOv5 和 YOLOv7-tiny 两种模型, 能够检测出复杂背景下的密集缺陷和小目标缺陷.

图 9 不同算法检测可视化比较

4 结论

本文提出一种基于贝叶斯优化的金属表面缺陷超 分辨率检测算法.通过构建多层融合超分辨率重建模 型,将 ESRGAN 和精细化分层结构有效融合,丰富主 干特征提取网络特征图的感受野,增强对特征图高低 频信息的提取,重建出边缘纹理清晰的图像;通过提出 瓶颈残差密集结构,丰富主干特征提取网络的浅层特 征和深层特征,增强模型对小目标和密集目标的分类 和定位能力;通过贝叶斯算法优化 YOLOv5-BRDB 模 型中 20 个关键超参数,提高模型超参数自适应能力. 实验表明,多层融合超分辨率重建模型有较好的图像 超分辨率重建效果,同时改进模型 YOLOv5-BRDB 的 $mAP_{0.5}$ 可达 0.782. 所提方法对 crazing、inclusion、 patches、pitted_surface、rolled_in_scale、scratches 这 6 类缺陷的检测精度相比 YOLOv5 的检测精度分别提 高 48.6%、22.7%、8.7%、3.5%、15.8%、3.0%. 检测 速度可达 102 f/s, 对小目标和密集目标缺陷有较好的 检测性能.

参考文献

1 王道累,刘易腾,杜文斌,等.基于级联孪生密集网络的金属表面缺陷检测方法.计算机辅助设计与图形学学报,

2022, 34(6): 946-952. [doi: 10.3724/SP.J.1089.2022.19056]

- 2 李维刚, 叶欣, 赵云涛, 等. 基于改进 YOLOv3 算法的带钢 表面缺陷检测. 电子学报, 2020, 48(7): 1284-1292. [doi: 10. 3969/j.issn.0372-2112.2020.07.006]
- 3 王一, 龚肖杰, 程佳, 等. 基于改进 YOLOv5 的金属工件表 面缺陷检测. 包装工程, 2022, 43(15): 54-60. [doi: 10. 19554/j.cnki.1001-3563.2022.15.006]
- 4 Wang CL, Zhou ZR, Chen ZM. An enhanced YOLOv4 model with self-dependent attentive fusion and component randomized mosaic augmentation for metal surface defect detection. IEEE Access, 2022, 10: 97758–97766. [doi: 10.1109/ACCESS.2022.3203198]
- 5 Xie YF, Hu WT, Xie SW, *et al.* Surface defect detection algorithm based on feature-enhanced YOLO. Cognitive Computation, 2023, 15(2): 565–579. [doi: 10.1007/s12559-022-10061-z]
- 6 邢苏霄,陈金玲,李锡超,等.基于深度学习的单图像超分 辨率重建综述.计算机系统应用,2022,31(7):23-34. [doi: 10.15888/j.cnki.csa.008566]
- 7 钟梦圆,姜麟. 超分辨率图像重建算法综述. 计算机科学与 探索, 2022, 16(5): 972-990. [doi: 10.3778/j.issn.1673-9418. 2111126]
- 8 刘孝保, 刘佳, 阴艳超, 等. 基于超分辨率特征融合的工件 表面细微缺陷数据扩增方法. 计算机集成制造系统, 2022, 28(6): 1844–1853. [doi: 10.13196/j.cims.2022.06.022]
- 9 Cheng LL, Kersemans M. Dual-IRT-GAN: A defect-aware deep adversarial network to perform super-resolution tasks in infrared thermographic inspection. Composites Part B: Engineering, 2022, 247: 110309. [doi: 10.1016/j.com positesb.2022.110309]
- 10 Akhyar F, Furqon EN, Lin CY. Enhancing precision with an ensemble generative adversarial network for steel surface defect detectors (EnsGAN-SDD). Sensors, 2022, 22(11): 4257. [doi: 10.3390/s22114257]
- 11 邵延华,张铎,楚红雨,等.基于深度学习的 YOLO 目标检

测综述. 电子与信息学报, 2022, 44(10): 3697-3708. [doi: 10.11999/JEIT210790]

- 12 Wang XT, Yu K, Wu SX, *et al.* ESRGAN: Enhanced superresolution generative adversarial networks. European Conference on Computer Vision. Munich: Springer, 2019. 63–79. [doi: 10.1007/978-3-030-11021-5_5]
- 13 Young MT, Hinkle JD, Kannan R, *et al.* Distributed Bayesian optimization of deep reinforcement learning algorithms. Journal of Parallel and Distributed Computing, 2020, 139: 43–52. [doi: 10.1016/j.jpdc.2019.07.008]
- 14 邓帅. 基于改进贝叶斯优化算法的 CNN 超参数优化方法. 计算机应用研究, 2019, 36(7): 1984-1987. [doi: 10.19734/ j.issn.1001-3695.2018.01.0021]
- 15 董丽娟,方召,陈会涛.基于深度学习和贝叶斯优化的压缩 机故障诊断.机械设计与制造,2023,384(2):45-52. [doi: 10.19356/j.cnki.1001-3997.20221103.043]
- 16 吴靖, 叶晓晶, 黄峰, 等. 基于深度学习的单帧图像超分辨 率重建综述. 电子学报, 2022, 50(9): 2265-2294. [doi: 10. 12263/DZXB.20220091]
- 17 Fu K, Peng JS, Zhang HX, *et al.* Image super-resolution based on generative adversarial networks: A brief review. Computers, Materials & Continua, 2020, 64(3): 1977–1997. [doi: 10.32604/cmc.2020.09882]
- 18 付苗苗, 邓森磊, 张德贤. 深度神经网络图像目标检测算法 综述. 计算机系统应用, 2022, 31(7): 35-45. [doi: 10.15888/ j.cnki.csa.008595]
- 19 Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015. 1440–1448.
- 20 Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
- 21 Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.

(校对责编:牛欣悦)