
2009 年 第 6 期 计 算 机 系 统 应 用

 189

一种基于语义的服务组装框架①

李伟平 褚伟杰 高福亮 刘 利 童 缙 (北京大学 软件与微电子学院 北京 102600)

A Framework for Ontology-Based Service
Discovery and Composition

Weiping Li, Weijie Chu, Fuliang Gao, Li Liu, Frank Tung

(School of Software and Microelectronics, Peking University, Beijing 102600)

Abstract: Currently a large number of web services as well as other kinds of services such as EJBs, COM, and even Java

Classes are made available to the general public. Facilitating the SOA based system development by
leveraging such kinds of services becomes a challenge. A framework for service repository, ontology based
service discovery and service composition is put forward. The service repository can maintain the web
services, EJBs, and Java Classes with the functions such as service registration, publishing, discovery,
matching, versioning, and monitoring. The details of service description are analyzed. A domain ontology for
Procurement, Selling, and Inventory is also given. Based on the domain ontology and the service repository,
the semantic enhanced service composition algorithm is discussed.

Key words: SOA; svice repository; srvice composition; ontology; OWL-S

When building SOA based application systems how
to manage the increasing number of both publicly
available services and services only exposed internally
within an organization becomes a challenge. The Univer-
sal Description, Discovery and Integration (UDDI) and
the IBM WebSphere Service Registry and Repository
(WSRR)are the two popular solutions. UDDI specifica-
tions define a registry service for Web services and for
other electronic and non-electronic services. A UDDI
registry service is a Web service that manages informa-
tion about service providers, service implementations,
and service metadata. Service providers can use UDDI to
advertise the services they offer. Service consumers can
use UDDI to discover services that suit their require-
ments and to obtain the service metadata needed to
consume those services. Although the newly updated

Version 3.0 claims to support the SOA [1], it suffers from
the lower searching accuracy and lacks the support for
other kinds of services such as EJBs, COMs, and Java
Classes. The WSRR from IBM provides an alternative
for managing services [2]. WSRR is the master metadata
repository for service interaction endpoint descriptions.
As the integration point for service metadata, it
establishes a central point for finding and managing
service metadata. Once service metadata is placed in
Registry and Repository, visibility is controlled, versions
are managed, proposed changes are analyzed and
communicated, and usage is monitored.
 Aiming to enhance the efficiency and accuracy of
such kind of service registry and discovery, we propose a
semantic enhanced service repository in this paper.
Accordingly a framework for service repository,ontology

① Supported by the National High-Tech Research and Development Plan of China(863 Program) under Grant No.2007AA04Z150; the National Natural

Science Foundation of China under Grant No.60704027

 计 算 机 系 统 应 用 2009 年 第 6 期

 190

based service discovery and service composition is
brought forward.

The remainder of the paper is organized as follows.
Section 1 describes the basic idea as well as the
framework for ontology based service composition.
Section 2 presents a domain ontology model. Section 3
illustrates the rationale and the functions of the service
repository. Section 4 introduces the semantic encapsula-
tion method as well as a semantic enhanced service
discovery algorithm. Section 5 concludes the paper with
a brief description of future work.

1 The Framework for Ontology-Based
Service Composition

To leverage both the external and internal deployed
services requires a way of registry, discovery, and
composition of them. A framework for service repository,
ontology based service discovery and service
composition is defined(see Fig.1) The service repository
provides the functions such as service registration,
publishing, discovery, matching, versioning, and
monitoring. And both web services and other services
such as EJBs, and Plain Old Java Objects (POJOs) are
supported. The services, both external and internal to an
organization, can be registered in this repository. The
repository hereby acts as the portal of all these existing
services. The semantic service enhancement encapsulate
the service with Ontology Web Language for Services
language (OWL-S), which add more detailed information
of services with service profile, service model, and
service grounding. With the semantic service enhance-
ment, the service discovery can be expected to be more
efficient compared with the situation in UDDI. The
domain ontology defines the basic concepts for a specific
vertical application, which can facilitate the service
description and hence discovery and composition. There
are two kinds of user interface available in this
framework. The details of this framework are discussed
in the later sections.

2 The Domain Ontology
The domain ontology model is required in order to

describe the services with semantics, which provides the

necessary knowledge about a certain service related to a
specific domain. In this paper the Web Ontology
Language(OWL)is used for modeling the domain
ontology.OWL is a language for defining and instant-
tiating Ontologies[3].Ontology is a term borrowed from
philosophy that refers to the science of describing the
kinds of entities in the world and how they are related.
OWL is intended to provide a language that can be used
to describe the classes and relations between them that
are inherent in Web documents and applications.

Fig.1 Ontology-based service composition framework

The use of the OWL language is to formalize a domain

by defining classes and properties of those classes, define
individuals and assert properties about them, and reason
about these classes and individuals to the degree permitted
by the formal semantics of the OWL language [4].

From section 1 we know that the domain ontology
build the solid foundation for the service semantic
enhancement and service discovery and composition.
Based on some mature methods about creating the dom-
ain ontology, one can build a Supply-Marketing-
Inventory ontology, which includes some basic concepts
in Supply-Marketing-Inventory, such as enterprise, provi-
der, contract, goods, and customer. Following the meth-
ods of Natalya F. Noy and Deborah L. McGuinness[5], we
use the following seven steps to build our ontology:

Step1.Determine the domain and scope of the
ontology.

Step2. Consider reusing existing ontologies.
Step3. Enumerate important terms in the ontology.
Step4. Define the classes and the class hierarchy.
Step5. Define the properties of classes-slots.

2009 年 第 6 期 计 算 机 系 统 应 用

 191

Step6. Define the facets of the slots.
Step7. Create instances.
Fig.2 shows the main concepts in this ontology.

There are three components in the domain of Procure-
ment-Selling-Inventory. Next, we will go into the details
of one of the important concepts, i.e., the selling concept.

Fig.2 Concept sets of supply-marketing-inventory

Fig.3 shows the relationship between different
classes under the domain ontology of selling, which is
generated by the Protégé-OWL editor 3.2.1[6], which
enables users to build ontologies in the W3C's OWL.
Some resources such as Word Net are referenced when
building the ontology[7].

Domain Ontology about selling includes 5 concepts
(or 5 classes). They are goods, client, enterprise, contract,
and status_contract respectively. The class of Goods has
two subclasses, consumable (for consumption) and
goods_industry (for industry). The class of client, which
has relationship with enterprise, has two subclasses,
common (means that common client) and VIP (means
that very important client). The class of Contract, which
is the bridge between client and enterprise, has two
subclasses, purchase_contract (about purchasing, not
used for selling) and sell_contract (contract about
selling). The class of status_contract, which describe the
status of the contract, has 5 different statuses.

In OWL all classes may have two kinds of
properties, i.e. Datatype properties and Object properties.
Fig. 4 describes the properties of class contract.

Every contract has such Datatype properties as
ContractID, Begin_Time, End_Time, and Quantity. If
two classes need to be connected the Object properties

are necessary. For example, class contract must record
enterprise, client and status, so it must have at least four
Object properties, hasEnterprise, hasClient, hasStatus,
and hasGoods, which are related to enterprise, client,
status_contract, and goods respectively.

Fig.3 Relationship of different classes at the
domain of selling

Fig.4 All properties of contract

3 The Service Repository
To leverage both the external and internal deployed

services a service repository is built with the capabilities
of managing services with functions such as service
registration, publishing, discovery, matching, versioning,

 计 算 机 系 统 应 用 2009 年 第 6 期

 192

and monitoring. Besides web services, other services
such as EJBs, and POJOs are supported. The repository
hereby acts as the navigation point of all the deployed
services either inside or outside an enterprise.

There are two objective of our service repository:
One is to provide the capabilities to store, manage and
version service information and their artifacts. The

artifacts include interfaces, contracts, SLAs, dependen-
cies, etc. This function is from holistic view other than
technical details of an enterprise's services. The other is
to define a set of XML Schema for service descriptions
and generates WSDL accordingly, when needed.

3.1 Principles of services descriptions metadata
In our services repository, we define XSD schemas

for services descriptions. The current industry standards
such as WSDL describe a service as a collection of
operational interfaces and their type specification together
with deployment information. These specifica- tions are
limited in their ability to express the capabilities and
requirements of the services themselves. The service
repository is the master metadata repository for service
descriptions. The concept of "service" here includes
traditional Web services that implement WSDL interfaces
with SOAP/HTTP bindings as well as a broad range of
SOA services that can be described using WSDL or XSD,
but might use a range of protocols and be implemented
according to a variety of programming models.

The schema’s definition is referred to the Web
Services Invocation Framework (WSIF)[8].WSIF enables
developers to interact with abstract representa- tions of
Web services through their WSDL descriptions instead of
working directly with the Simple Object Access Protocol
(SOAP) APIs, which is the usual programming model.
With WSIF, developers can work with the same
programming model regardless of how the Web service is
implemented and accessed. In this paper we do not take
advantage of the WSIF’s programming model. Rather, we
use the description capability of services of WSIF.

The schemas we defined here have four parts:
(1) The first part is the declarations of interfaces of a

service, which describes the operations provided by the
service. The interface is described by <interface>
element. The interface includes one or more operations

with input and output parameters. The parameters are
defined in the <types> section.

Fig.5 An EJB binding service

(2) The second part describes the “binding” of a

Service. Services use <binding> element to describe the
access mechanism that service’s consumers have to use to

<<?xml version="1.0" ?>
<description targetNamespace="http://ss.pku/helloworld/"
 xmlns:tns="http://ss.pku/helloworld/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsd1=:”http://ss.pku
/ServiceRepository/xsd”

xmlns:ejb="http://ss.pku
/ServiceRepository/xsd/ejb/"

 xmlns="http://ss.pku/helloworld/">

<!-- types declarations -->
<types>

<xsd:schema targetNamespace=”http://ss.pku
/ServiceRepository/xsd”

xmlns =”http://ss.pku /ServiceRepository/xsd”>
<xsd:element name="GetHelloStringRequest"

type="xsd:string"/>
<xsd:element name="GetHelloStringResponse"

type="xsd:string"/>
</xsd:schema >

</types>

<!—service interface declaration -->
<interface name="HelloWorld">

<operation name="getHelloString">
 <input messageLabel=”In” element="xsd1:
GetHelloStringRequest" />
 <output messageLabel=”Out” element="xsd1:
GetHelloStringResponse"/>
 </operation>
</ interface>

<!-- binding declaration -->
<binding name="HelloWorldEJBBinding"
interface="tns:HelloWorld">

<ejb:binding/>
 <ejb:operation ref="tns:getHelloString"
 methodName="getHelloString"

homeInterface=”pku.ss.HelloWorld”
ejb-link-name=”

HelloWorldEJB.jar#getHelloString”
session-type=” stateless”
ejb-version=”EJB2”
name=”pku.ss.HelloWorldHome”

uri= "corbaname:
iiop://localhost:2089:#ejb/pku.ss.HelloWorld/>
 </ejb:operation>
</binding>

<!-- service declaration -->
<service name="HelloStringService"
interface="tns:HelloWorld">

<endpoint name=”HelloWorldEndpoint”
 binding = "HelloWorldEJBBinding"
address=”http://ss.pku/helloworld/”/>

</service>
</description>

2009 年 第 6 期 计 算 机 系 统 应 用

 193

call the service, including Web service, stateless session
EJB, and Java class.

(3) The third part describes the physical location
(address, URL) where the service is available. The URL
was defined in <address>element.

(4) The fourth part describes nonfunctional
attributes and attributes for service-level agreements of
the services. For example: how long a service usually
runs, who is allowed to call it, how much a service call
costs, and so on.

Fig.5 shows an example that describes an EJB into a
service with our schema.
3.2 The functions of a service repository

The functions of service repository include:
(1) Service Registry: The registration information

includes attributes such as name, version, and description
of the service and links to the auxiliary documents
imported by the service definition document.

(2) Service discovery. In the services repository, one
can search a target service and its artifacts based on the
key word. This discovery method is very simple and is
used only inside this framework, whereas the service
discovery and composition method discussed in next part
is the advanced one and will be used by the application
developers.

(3) Service validation. The service repository checks
whether the services are available in the repository.

(4) Service versioning. The service repository
provides versioning functions for all service artifacts,
regardless of their type.

(5) Service Repository APIs: Besides using a Web-
based console application to manage services artifacts,
applications can interact with repository using its
Application Programming Interfaces (APIs) for CRUD
operations.

4 Semantic Encapsulation of Services and
Ontology-based Service Composition

The traditional way of service discovery such as the
UDDI discovery is keyword-based matching, which is
usually considered poor in performance. To enhance the
efficiency and accuracy of service discovery, we propose
the idea to append additional semantic information for

the services in the service repository, which describe the
services’ details that can be used to discover appropriate
service.

Fig.6 Top Level of the service ontology

The W3C proposes an ontology language named
OWL-S for semantic description of web services. The
OWL-S’top level is showed in Fig.6 [9]. An OWL-S web
service advertisement has three parts: service profile tells
“What the service does”, service model tells “how the

service works”, and service grounding tells “how to
access the service”. It also has four attributes: Inputs,
Outputs, Preconditions and Effects, which are usually
used for service discovery and composition.
4.1 An example for semantic encapsulation of services

In this part a simple example of encapsulate a POJO
into service is given. The concepts in the Domain
Ontology are used for the semantic encapsulation of
services. Fig.7 shows a java class named Generate
SaleOrder. Let’s suppose an enterprise provide this service.
The customer signs in, selects the goods he wants and then
the service will generate an Order for him.

Fig.7 A java class

Fig. 8 shows a part of the whole file. You can see the

service has two input “goodsId” and “quantity”. It also

has an output “SaleOrder”. The concept used by the IOs

is defined in the domain ontology before. The rest part of
this file defines the service’s preconditions, effects and

public class generateSaleOrderImpl {
private String Sale_Order_Id;
public String generateSaleOrder(String goodsId,int
quantity) {

return Sale_Order_Id;
}

}

 计 算 机 系 统 应 用 2009 年 第 6 期

 194

other information. Other services may be more complex
but they all follow the similar format.

Fig.8 An OWL-S service description

4.2 The service discovery algorithm

After the semantic encapsulation is finished, the
semantic service can be used for service discovery and
composition. We experimented with two algorithms in

our early work. One is proposed in Ref.[10]. It is just an
algorithm for service discovery. The other one called
Service Aggregation Matchmaking (SAM) can do the
composition work while discovering services[11].

The first algorithm compares the IOs (inputs and
outputs) given by client with the IOs of all services stored
in the service repository and computes the minimal
distance between their concepts in the taxonomy tree of
domain ontology. It uses four match degrees: exact, plug
in, subsume and fail to distinguish the match results.
Matched services will be sorted by the degree and
returned to the client.

The second algorithm SAM is a more complex one.
At first SAM builds a process model tree for each
OWL-S service’s service model in service repository. An
example is shown in Fig. 9. Then the algorithm finds out
useful trees for the client’s request and uses them to
produce a dependency graph representing the depend-
encies among atomic processes and their IOs as shown in
Fig. 10. The dependency graph will be analyzed to
recognize the useful nodes and remove the useless nodes.
The process nodes remain in the graph at last can be used
to produce the matching results which will be return to
the client.

Fig.9 Process model of an electronics store service[11]

Both of the two algorithms still have some
deficiencies. The time complexity may become very high
if there are a lot of services in the repository. They also
need the client to provide a lot of IOs of the anticipant
service, which may confuse the client sometimes. To

<!--
URI1: http://www.w3.org/2001/XMLSchema#anyURI
URI2: http://www.owl-ontologies.com/Ontology1230965933.owl
URI3: http://www.example.org/owls/generateSaleOrder.owl
-->
<rdf:RDF>
 <owl:Ontology rdf:about=""> … </owl:Ontology>
 <process:Output rdf:ID="SaleOrder">

<process:parameterType rdf:datatype="&URI1">
&URI2#sell_contract</process:parameterType>

 </process:Output>
 <rdf:Description rdf:about="&URI3#generateSaleOrderProfile">
 <profile:hasResult>
 <process:Result rdf:ID="result">
 <process:hasResultVar>
 <process:ResultVar rdf:ID="ResultVar">
 <process:parameterType rdf:datatype="&URI1">

&URI2#status_one</process:parameterType>
 </process:ResultVar>
 </process:hasResultVar>
 </process:Result>
 </profile:hasResult>
 <profile:hasPrecondition
rdf:resource="http://www.daml.org/services/owl-s/1.2/generic/Expressi
on.owl#AlwaysTrue"/>
 <profile:hasOutput rdf:resource="#SaleOrder"/>
 <profile:hasInput>
 <process:Input rdf:ID="quantity">
 <process:parameterType rdf:datatype="&URI1"

>http://www.w3.org/2001/XMLSchema#int</process:parameterType>
 </process:Input>
 </profile:hasInput>
 <profile:hasInput>
 <process:Input rdf:ID="goodsId">
 <process:parameterType rdf:datatype="&URI1">

&URI2#goods</process:parameterType>
 </process:Input>
 </profile:hasInput>
 </rdf:Description>
 <process:Result rdf:ID="Result_5"/>
 <rdf:Description rdf:about="&URI3#in0">
 <rdfs:label
rdf:datatype="http://www.w3.org/2001/XMLSchema#string"
 >goodsId</rdfs:label>

<process:parameterType rdf:datatype="&URI1">
&URI2#goods</process:parameterType>

 </rdf:Description>
 <process:Result rdf:ID="Result"/>
 <rdf:Description
rdf:about="&URI3.owl#generateSaleOrderAtomicProcessGrounding">
 <grounding:wsdlOutput>
 ….
 </grounding:wsdlOutput>
 </rdf:Description>
 <rdf:Description>
 <grounding:owlsParameter rdf:resource="#goodsId"/>
 </rdf:Description>
 <rdf:Description>
 <grounding:owlsParameter rdf:resource="#quantity"/>
 </rdf:Description>
 <rdf:Description rdf:about="&URI3#generateSaleOrderProcess">
 <process:hasOutput rdf:resource="#SaleOrder"/>
 </rdf:Description>
</rdf:RDF>

2009 年 第 6 期 计 算 机 系 统 应 用

 195

overcome the deficiencies, we are trying to find out a
new algorithm for service discovery and composition in
our future work.

Fig.10 Colored dependency graph [11]

5 Conclusion
A framework for ontology based service composi-

tion is proposed. The three main parts, i.e. the Domain
Ontology, the Service Repository, and the Semantic
service enhancement are thoroughly discussed. The SOA
based system development will benefit from this
framework. With the service repository the large amount
of existing services deployed external and internal of an
enterprises can be managed. With the semantic service
enhancement one can easily find a service more
accurately and more efficiently. Doman Ontology
provides the concepts and their properties of a certain
domain, which can facilitate the semantic description of a
service with OWL-S and definitely can accelerate the
service discovery and service composition. Currently we

are working on the toolset for this framework and on the
service discovery and service composition algorithms.

References
1 http://www.oasis-open.org/committees/uddi-spec/doc/t

cspecs.htm.

2 Chris Dudley, Laurent Rieu, et al. WebSphere Service

Registry and Repository Handbook, March 2007, IBM.

3 Smith MK, et al. OWL Web Ontology Language

Guide,http://www.w3.org/TR/2004/REC-owl-guide

-20040210/.

4 http://www.w3.org/TR/2004/REC-owl-guide－200402

10/ #Usage.

5 Noy NF, Deborah L. McGuinness, Ontology Deve-

lopment 101: A Guide to Creating Your First Onto-

logy, http://www.ksl.stanford.edu/people/dlm/papers/

ontology101/ontology101-noy-mcguinness.htm.

6 http://protege.stanford.edu/.

7 http://wordnet.princeton.edu/.

8 http://ws.apache.org/wsif/.

9 http://www.w3.org/Submission/OWL-S/,OWL-S: Sem-

antic Markup for Web Services.

10 Paolucci M, Kawamura T, Payne T, Sycara K.

Semantic Matching of Web Services Capabilities.

First Interna- tional Semantic Web Conference on

The Semantic Web, LNCS 2342, Springer-Verlag,

2002:333－347.

11 Brogi A, Corfini S, Popescu R. Composition-oriented
Service Discovery. Gschwind T, ed. Proceedings of
the Software Composition. Edinburgh: Springer-
Verlag, 2005:15－30.

