
 计 算 机 系 统 应 用 2009 年 第 6 期

 96

一种统一的服务描述语言分析与设计①
司华友 1,2,3 张 力 1,2,3 陈 钟 1,2,3,4 胡建斌 1,2 倪宇林 3,4

(1.北京大学 信息科学技术学院 北京 100871;2.高可信软件技术教育部重点实验室 北京 100871;

3.北京大学 ACOM 金融信息化研究中心 北京 100080;4.北京大学 软件与微电子学院 北京 102600)

Analysis and Design of a Unified Service
Description Language

Huayou Si 1,2,3, Li Zhang 1,2,3, Zhong Chen 1,2,3,4, Jianbin Hu 1,2, Yulin Ni 3,4

(1. School of Electronics Engineering and Computer Science, Peking University, Beijing 100871;

2. Key Laboratory of High Confidence Software Technologies Ministry of Education, Beijing 100871;

3. PKU-ACOM Financial Information Research Center, Peking University, Beijing 100080;

4. School of Software and Microelectronics, Peking University, Beijing 102600)

Abstract: During the recent years, Service-Oriented Computing (SOC), as a new computing paradigm, has been widely

accepted in academies and industry. More and more service-oriented computer system analysis and design
methodologies have been proposed. It is believed that if a service-oriented methodology is based on
compatible concepts and description methods between the application domain and the system responsibility, it
would take more advantages. So, in this paper, a Unified Service Description Language (USDL) is suggested
based on our understanding of service and its attributes to unify description of web service and general service
in application domain. With a demo in DELCCA project, USDL is asserted to efficiently support service
oriented analysis and design.

Key words: service; web service; unified service description language (USDL); SOAD

1 Introduction
In the past few years, in the computer domain,

software engineers began to adopt “service” concept
which came from Economics to develop and deploy
applications. Now, Service-Oriented Computing (SOC) is
widely accepted, which represents a new computing
paradigm. SOC will change the way we develop and use
software [1].

SOC is emerging for building and maintaining

applications in a cost effectiveness way. However, there
is a considerable amount of gaps between the promises of
SOC and the maturity of service engineering metho-
dology. The main cause of the gaps is the lack of
effective analysis and design methods[2]. That is to say,
there is a great demand on effective service-oriented
analysis and design (SOAD) methodology[3,4].

① Supported by the National Natural Science Foundation of China under Grant No.60773163

2009 年 第 6 期 计 算 机 系 统 应 用

 97

Analysis and design inevitably link their problem
domain and system responsibility, and describe them,
which must apply the domain’s concepts. In the process,
“service”is a central concept that is used in both
problem domain and system responsibility. So it should
import problem domain into system straightly. Though
there have been several methods to describe service in
domain or in computer, yet analyzer and designer have
few practicable methods to describe service in both
domains effectively[5]. In fact, a good SOAD
methodology must be based on a good and accordant
description method to application domain and computer
concept, such as web service [6].

How to describe a service and how to explain the
different service deliveries are questions which bother
the analysis for a long time[1,7]. Based on survey of
some service definitions and ideas about service
essence, this paper proposes an accordant service
description method, which will provide strong points to
SOAD. In Section 2 of this paper, the ideas the method
bases on are discussed. In Section 3, the USDL method
is defined. In Section 4, the paper analyzes traditional
description of web service, i.e. wsdl, how to be
translated into the method. In Section 5,authors use the
method to describe the DELCCA project roughly to
assert that it efficiently supports SOAD. And in the last
section, the paper discusses the characters of the method
and intending research.

2 Ideas USDL Bases on
In this section, some ideas are listed as follows,

which will be used as bases to design USDL to describe
service which includes web service in computer domain.
2.1 Everything is service

Any interaction between two entities can be regarded
as a service process. One entity can be regarded as
provider of the service process, and the other is user of the
service. The interaction can be a collaboration process of
two pieces of program, or the course of conversation
between two people. They can be abstracted as a service
process. So, every collaboration or even average
interaction is regarded as a service process. Service can be
modeled any process between two entities.

2.2 Service is always provided by service network
When a service entity provides service for a user, it

maybe needs several other services. In fact, in our
society, there are few services which can serve its
customer independently[8]. In contrary, when serving its
customer, almost all services must consume some other
services as a customer. For example, we all know, when
going to shopping, the shop provides services for us. At
the same time, the shop must need some other services,
such as manufacturer, employee, electric power plants,
and so on. The relationship of dependence can be
considered as service network[9,10]. Especially, in order to
provider a given service, several service entities must
collaborate based on the relationship of dependence. The
relationship among the several service entities can be
described by diagram, such as Fig.1. The diagram here
can be named service network. In the diagram, the
arrowheads point to service receiver.

Fig.1 Service network

2.3 Service is hierarchical

In order to provider a given service, as a user, a
service entity always uses some other services. The
services used always are hidden by the user services,
which can not be found or seen by the end user. For
instance, when we receive the service of a mobile
telephone, we do not care about the big system behind
the set, such as signal tower which send signal for mobile
telephone. Their functions are encapsulated by the
interface services entity, which interacts directly with end
user. About the given service, which is the function-
imited service entity, such as service1 in Fig.2, can
represent the total service network function. So, we
denote the representation as an abstract new service, such
as service0 in Fig.2. And we adopt hierarchical structure
to express this kind of relationship. In itself, service0 is
composite service.

 计 算 机 系 统 应 用 2009 年 第 6 期

 98

Fig.2 Service hierarchical structure diagram

2.4 Service should be preexistent

Service is designed for a special application, even
for no purpose. But, no one knows how it will be used in
other way in the future. No one knows that its user how
to be used too. Maybe, in the future, it or its user is found
dynamically, and used in a given collaboration which is
not foreseen.

So, in substance, user, which must be a person or
another service entity, is clever than the service. It must
know how to use the preexistent service. Service is
preexistent, this is to say, service entity is designed not
only for a given or intending application, but also for
potential, unborn and unknown application. Unborn
application usually is established based on those
preexistent services.

So, a service does not and can not care about how to
be used in the future. It only cares about “what I can do,

and how I will do”, which are just that we describe about
a service.

A user will find dynamically a service based on
what it can do, and begin to design a collaboration
process to interact with the service based on how it will
do it.“How to do it”is like a mirror. When the user set
eyes on the mirror, the clever user will reflect its action in
the future interaction with the service. So the
collaboration rule will be worked out. The method which
describes service bases on the principles.
2.5 “Serve” is different from service

“ Serve ” is an interactional process between

provider and user, which can not depart from a given
provider and its user. In the process, “serve” realizes

value[11]. Value lies in the process. If we have only the
service ability that can be called service entity or service

system, we can not achieve values. Each process in
which “serve” is realized is particular. The process is
provided by service, i.e. service entity or service system.
So, when describing a service, the interaction process
needn’t be described, since it is not existent. It is only
existent when the “serve” occur. The thing which needs
describing is service logic or service rule, which will
generate a service process according to particular
requester or surroundings.

3 Service Description Method Definition
Based on the concepts that are discussed as above, a

service can be described from two aspects. The first
aspect is service interactional logic, which can be called
behavior logic of a service. From service own point of
view, behavior logic describes service interaction rules
which is regarding to service interactive interface. Based
on the interaction rules, service expresses what it can do
and which values it can provide. Basing on the
interaction rules too, the potential user judges whether to
adopt the service and how to interact with the service
when their collaboration occurs. Of course, the designer
can use to design a perfect service system.

The other aspect is service organization logic, which
describes the service how to work. Here, we adopt the
two concepts of service network and hierarchical
structure, which are discussed just as above.

So now, we design a service description or
definition as follows:

Service =< behavior, organization>
3.1 Organization logic definition

In the two-tuple, the first element behavior repress-
ents the service interaction logic, and the second element
organization for organization logic.

organization =<Services, PR, SuperS>.
The organization is defined as a tuple too. It is a

three-tuple. The first element shows which services are
involved in the big service objective. It is set, which
include the services involved, as follows:

Service={service| services is involved}
PR=<service1, service2>
PR is a binary relationship, which represents that

service2 provides service for service1. And:

2009 年 第 6 期 计 算 机 系 统 应 用

 99

service1, service2∈Services
If organization =NULL, it is equivalent to Services

=Ф.
When service is an atomic, or service is provided by

an entity or a system which do not need analyzing, the
service organization should be defined NULL.

Obviously, the tuple<Services, PR>is an analogous
Partial Ordered Set. It is not a real Partial Ordered Set,
because it can meet three principles of Partial Ordered Set:

<service1,service1> is not an element of PR, it must
be an element in Partial Ordered Set.

Obviously, if <service1,service2> ∈ PR, then
<service2,service1> is not an element of PR. It is
common both in the analogous Partial Ordered Set and in
a Partial Ordered Set.

if <service1,service2>,< service2,service3> ∈ PR,
then <service1,service3> is not always an element of PR.

So, relationship set < Services, PR > is only an
analogous Partial Ordered Set. In fact, < Services, PR >
is unnecessary defined as a perfect Partial Ordered Set.
But, now the organization set can be described by Hasse
Diagram too.

SuperS is a set which has the attribute that SuperS
Service. The elements of the set are maximum elements
in the analogous Partial Ordered Set. Maximum elements
in the Set refer to the services that the upper service’s
user sometimes touches with them directly. This is to say,
the lower services in SuperS which encapsulate by the
upper service have the opportunity to represent the upper
to interact with the user.

Naturally, organization logic can be described with a
kind of ontology language, such as OWL-S.
3.2 Interaction logic definition

In the definition of service, the first element
describes the service behavior logic, which is tagged as

“behavior”. “behavior” is defined as a triple-tuple, as

follows:
behavior=<InteractionsWithUser, firstAction, lastAc

tions>
In the behavior set, InteractionsWithUser is a set.

The set contains lots of action sections which will be
adopted when the service serves for a user. firstAction is
a element in InteractionsWithUser. And it is a special

action, which is an initial action that must be adopted
when the service begins to serve. lastActions is a set too.
It includes always more than one actions. When the
service adopts one action of lastActions, it is means that
the serving process is over. For the sake of convenience,
the concepts, such as action and nextActions, are defined
as follows:

action∈InteractionsWithUser

firstAction∈InteractionsWithUser

lastAction∈lastlActions? InteractionsWithUser

nextActionsInteractionsWithUser
 Action is element in the InteractionsWithUser. It is a
basal element of behavior logic. Based on special
environment, the service chooses an action to deal with
the user until the action chosen is an element in
lastAction. The chosen actions and the action the user
reflects make up of a process, which is specific “serve”
provided for its user.

Here, the action is defined as quarter-tuple. The first
element describes the action type. The second element
represents things or messages which are exchanged
between user and the service when the action occurs.
“results” represents a result set which contains all

results and effects of the action. “rules” shows the logical
relationship between the action and other actions under
the given result.

action=<actionType, paraThings, results, rules>
actionType ∈ {acquire, send, do, wait, close,

initiate}
“acquire” and “send” type action can be used to

reflect the receiver’s behavior, since if the service begins
an acquiring action or accomplishes a sending action, the
receiver must take an corresponding action. And “wait”
action can be regarded as a kind of acquire action. So, it
can reflect the receiver’s behavior too. The “do” action
represent a service own action.

lastAction and firstAction can be detailed generally
as follows:

lastAction=< close, Null, Null, Null>
firstAction=<initiate, Null, Null, {nullRule}>
“rules”describes the logical relationship between

the action and other actions. A rule is binary-tuple too. If
a rule belongs to an action, the rule first element is a

 计 算 机 系 统 应 用 2009 年 第 6 期

 100

result belongs to the action. And the next element
represents which is the next action the service will adopt
under the current result. The formulae and concepts are
defined as follows:

rulesRules
rule ∈ rules
rule|thisaction =< result|thisaction, nextActions>
nullRule =< null, null, {action}>
nextAction=action ∈ nextActions

paraThingparaThings
paraThing∈serviceDomainOnto
“behavior” element in a service can be described

with OWL-S and SWRL(A Semantic Web Rule Langu-
age).

So, now a theorem can be conclude obviously:
behavior|service=∑SuperS behavior
It means that a service behavior logic is equal to

summary behavior logic of services in the SuperS in the
service organization logic.

4 An Example of Translation from
Traditional Methods into the Method

Similarly, the languages, such as WSDL、OWL-S,

are used to describe web service. However, they only
describe the web service interface, which includes output
and input, sometimes, includes effects and results. Even
though web service is a composite service how is process
in essential made up with other web services described
by OWL-S. So, these languages can not describe the
complex interaction between the service and its user.

But web service is one kind of service which unifies
the service concept in computer memory and in real
world. For observing the world from the interactional and
dynamic aspect, service can be used to model and unify
any interactional behavior. So, we can use the description
method to describe web service. Therefore, it can be
translated into the description that is given above. This is
a segment adopting from wsdl document as follows:
 <interface name = "reservationInterface" >
 <fault name = "invalidDataFault"
 element = "ghns:invalidDataError"/>
 <operation name="opCheckAvailability"

pattern="http://www.w3.org/ns/wsdl/in-out"
 style="http://www.w3.org/ns/wsdl/style/iri"
 wsdlx:safe = "true">

<input messageLabel="In"
element= "ghns:checkAvailability" />

<output messageLabel="Out"
element="ghns:checkAvailabilityResponse"

/>
<outfault ref="tns:invalidDataFault"

messageLabel="Out"/>
</operation>

</interface>
This wsdl segment can be translated into our

description as follows:
theService=< ourBehav, ourOrgani>
ourOrgani =Null
ourBehav =<theIWithUser, thefirstAction,

thelastActions>
theIWithUser={acquireAction,sendAction,thelastAc

tion, thefirstAction }
thefirstAction=<initiate, Null, Null, {theNullRule}>
theNullRule=< null, {acquireAction }>
thelastAction=< close, Null, Null, Null>
acquireAction =< acquire, paraIn, results, rules>
paraIn=”ghns:checkAvailability”
results={getParaIn}
rule=<getParaIn, sendAction >
sendAction =< send, paraOut, results, rules>
paraOut∈{”ghns:checkAvailabilityResponse”, "tns:

invalidDataFault"}
results={ paraOut}
rule=< this, paraOut, thelastAction >

5 The Method Used in DELCCA as a Demo
DELCCA is an ongoing project deploying an

integrated location-aware service system for passengers,
airlines and airport management. DELCCA Research
Workshop is made up of Peking University and IT
University of Copenhagen. The intending system will
adopt web service technology to analyze, design and
implement. When deployed, the system will detect
passenger location in airport at any moment, and then
inform passengers what to do just now to avoid delaying

2009 年 第 6 期 计 算 机 系 统 应 用

 101

his or her airline. It is expected to be operational in 2009
in Copenhagen Airport, using RFID and Bluetooth
detection that tracks mobile phones, passenger badges
and trolleys.

Now, in the project analysis phrase, we try to adopting
service viewpoint to analyze the project requirement and
describe the service found in the project in USDL.

Fig.3 Service identification in whole project scope

A very simple and rough service analysis in
DELCCA project based on the description is listed as
fellows:

First, the project is regarded as the most upper
service, which is called “informerS”. It directly serves
passengers. It can detect passenger location real time. If
needing, it informs passengers something. The upper
service is realized by three other services, according to
intending technology adopted, which are talkerS,
CheckerS and infoService.

“ informerS ” represents the intending whole
project interaction with passengers in airport. It is
described with USDL as follows:

informerS=<informerSBehav, informerSOrgniz>
informerSOrgniz=< informerServices, informerPR,

informerSuperS >
informerServices ={talks, checkers, infoService}
informerPR={<talkerS,checkS>,<checkS,infoServic

e>}
informerSuperS={ talkerS}
informerSBehav=<informerInteractions,

informerfirstAction, informerlastActions>
informerfirstAction=<initiate,Null,Null,{nullRule}>
theNullRule=<null, null, { callAction }>
callAction=< acquire, callMessages, callResults,

callRules >
callResults={getMessage,!getMessage}

callRules={<getMessage,showAction>,<!getMessage,
callAction >}

showAction=< send, showMessages, showResults,
showRules >

showResults={sendshowMessage}
callRules={<sendshowMessage,informerlastAction>}
informerlastAction=<close, null, null>
“talkerS” represents a service function of elect-

ronic device in passenger hand to provide information
service directly. And it is an only element in inform-
erSuperS in informers. So:

talkerS=< talkerSBehav, talkerSOrgniz>
talkerSBehav= informerSBehav
Because informerSuperS={talkerS}, and talkerS is

the only element in set of informerSuperS, we can
believe“talkerSBehav= informerSBehav” is right.

talkerSOrgniz=Null.
Because talkerS is a automible mobile telephone or

some electronic set, it can provide the service all by
itself. We do not need analyze it.

Now, as for CheckerS, if we believe that it which
provides its service is depended by a service network, we
should analyze the service network deeply. But, now we
can regard it as a self-governed electronic product. We
will not analyze its service network deeply. We only
describe it as follows:

CheckerS=< CheckerSBehav, CheckerSOrgniz>
CheckerSOrgniz=Null.
CheckerSBehav=<CheckerInteractions,heckerfirstA

ction,
CheckerlastActions>

CheckerfirstAction=<initiate,Null,Null, {nullRule}>
nullRule=<null, null, { checkAction }>
checkAction=<acquire,checkMessages,checkResults,

checkRules >
checkResults={getManyTalker,getNoneTalker}
checkRules ={< getManyTalker, judgeAction>,

<getNoneTalke, CheckerlastActions >}
CheckerlastAction=< close, Null, Null, Null>
judgeAction=< do, showMessages, judgeResults,

judgeRules >
judgeResults={ManyTalkerNeed, NoneTakerNedd}
judgeRules={<ManyTalkerNeed, sendAction>,

< ManyTalkerNeed, CheckerlastActions >}

 计 算 机 系 统 应 用 2009 年 第 6 期

 102

sendAction< send, sendMessages, sendResults,
sendRules >

sendResults={sendSucceed, sendFailure}
judgeRules={<sendSucceed,CheckerlastActions>,<

sendSucceed,
sendAction >}

Then, if needing, we can describe infoService’s service
behavior and its oganization or by the way indepth.

6 Conclusion and Future Works
In the paper, a kind of service description language

is put forward based on listed ideas of service and its
attribute, which is called USDL, i.e. unified service
description language.

First, the method USDL unifies description of web
service and general service concept. So, general service
concept and web service now are equally treated.
Because general service concept always is adopted in
analysis phase and web service is in design phase, USDL
provides a consistent concept and method to describe
service, i.e. a thing important in service oriented system.
Based on the idea that every interaction can be modeled
as service, SOAD will be a new angle and method to
understand and implement intending system. In the
method, USDL will play an important role.

USDL takes the standpoint of service self. It does
not describe the interactive processing between service
and its customer, since we believe interactive
processing exists in the moment when interactive
processing occur, it is specific and instantaneous. So
we can not describe it. It does not describe the
processing procedure of the service, since we do not
need. Based on the description, designer knows the
processing procedure of the service how to do. It does
not describe the processing procedure of the user too,
since it is other’s matter, we do not care about. What it
describes is service behavior logic. It firstly describes
every possible action of the service and results that will
produce once the action occurs.

USDL is also powerful. The concepts in interactive
processing, such as synchronization and asyn, can be
realized in its description logic. It can be translates into
owl description, which will provide potential ability to

service dynamic collaboration based on reasoner.
Naturally, it is not perfect. It should be put in

practice in more real project. Good SOAD accordance
with it should be designed too.

References
1 Tsai WT, Wei X, Paul R, Chung JY, Huang Q, Chen Y.

Service-oriented system engineering (SOSE) and its
applications to embedded system development. SOCA,
2007,1:3－17.

2 Chang SH, Kim SD. A Systematic Approach to
Service-Oriented Analysis and Design. Product-
Focused Software Process Improvement-8th Interna-
tional Conference, PROFES. Proceedings.v 4589
LNCS, 2007:374－388.

3 Sigh M, Huhns M. Service-Oriented Computing:Sem-
antics, Processes, Agents. Wiley, Chichester, 2005.

4 Kambhampaty S. Service Oriented Analysis and Design
Process for the Enterprise. 7th WSEAS International
Conference on Applied Computed Science, Venice,
Italy, 2007.

5 Jamshidi P, Sharifi M, Mansour S. To Establish
Enterprise Service Model from Enterprise Business
Model. 2008 IEEE International Conference on
Services Computing. Hawaii, USA, 2008.

6 蔡维德,白晓颖,陈以农.浅谈深析面向服务的软件工

程.北京:清华大学出版社, 2008:84.
7 Zhang L, Zhang NY, Chen Z. A Reference Service

Description Framework. Journal of Harbin Institute of
Technology, 2008,09(15):88－93.

8 Tien JM, Berg D. A Case for Service Systems,
Engineering. Journal of Systems Science and Systems,
Engineering, March 2003,12 (1):13－38.

9 Wang ZJ, Xu XF, Mo T. Service Architecture: High
Level Descriptions of Service System. Journal of
Harbin Institute of Technology, 2008,09(15):7－12.

10 Kwan SK, Min JH. An Evolutionary Framework of
Service Systems. Journal of Harbin Institute of

Technology, 2008,9(15):1－6.

11 Van Nuffel D. Towards a Service-Oriented Metho-
dology: Business-Driven Guidelines for Service
Identification. On the Move to Meaningful Internet
Systems2007:OTM2007Workshops,2007,11:29－303.

