
2009 年 第 6 期 计 算 机 系 统 应 用

 57

服务合成的性能预测
谈华芳 1 Ratakonda Krishna C.2 朱 俊 1 苏 辉 1

(1.IBM 中国研究院；2.IBM 华生研究中心)

Service Composition Performance Predication

Huafang Tan (IBM China Research Lab, Beijing 100094)

Ratakonda Krishna C. (IBM Waston Research Center)

Jun Zhu, Hui Su (IBM China Research Lab, Beijing 100094)

Abstract: One benefit of SOA is from service composition which combines existing services to form a new valued-added

service in the form of business process. This also creates the need to ensure that the performance of those
composite services meets the business requirements. This paper proposes a method for evaluating the
performance of composite services. We automatically transform a composite service modeled by BPEL, into a
performance model based on Layered Queuing Networks (LQN) and then leverage existing LQN solvers to
predict their performance. The inputs to our transformation algorithm are an XML file which contains a
service composition model complying with the BPEL4WS specification, a related performance profile and a
service topology. The output of the model is the corresponding LQN model which can be directly analyzed
using existing LQN solvers.

Key words: BPEL; LQN; transformation

1 Introduction

Service-oriented architecture(SOA)[1] is an evolu-
tion of distributed computing based on the request/reply
design paradigm for synchronous and asynchronous
applications. An application's business logic or individual
functions are modularized and presented as services for
consumer/client applications. What's key to these
services is their loosely coupled nature; i.e., the service
interface is independent of the implementation. Applica-
tion developers or system integrators can build applica-
tions by composing one or more services into composite
services without knowing the underlying implementa-
tions of individual services. Currently a variety of
approaches to service composition are emerging.
BPEL4WS (BPEL) [2] is the most popular one.

In carrying out this composition task showed by

Fig.1, the critical step is to look up right services to make
an abstract process executable. Typically the integrator
has either no direct control over these factors themselves
or cannot easily predict them from the available
information. Thus, the focus is typically on ensuring that
the functional requirements are met. But it is also very
important to understand and be able to predict
performance factors such as average request-response
time. Given that non-functional requirements play a key
role in the usability and scalability of an application, it is
highly desirable to clearly understand the performance
implications of a given service composition and to be
able to reason about them during design to help integrator
select right services and make deployment decisions.

 计 算 机 系 统 应 用 2009 年 第 6 期

 58

Fig.1 Service composition task

To predicate the performance of a composition
service, firstly we need build a performance model and
then use the analysis and simulation method to get the
predicated performance metrics. There are two
approaches for performance modeling based on Layered
Queueing Network(LQN)[3] and historical data analysis.
LQN is a popular performance prediction model and has
been used in study the performance of distributed
software systems[4,5] which amply demonstrate its
potential. There are many researchers work on how to
analyze or simulate it to identify the performance metrics
such as response time, throughput and utilization
according the LQN model. Comparing with historical
performance data analysis, it doesn’t need historical data.
So it is adapt to a new designed composite service.

This paper provides a method to automatically
generate an LQN performance model from the service
composition model described by a BPEL program and
the related performance profile–thus enabling the archit-
ect to combine the activities of design specification and
performance modeling. We believe and in practice
observed that designing keeping the SOA performance in
perspective from the design onset helps improve the
design process itself. This ensures the architect makes the
right design choices and does not need to redesign/
re-architect during the testing phase necessitating
expensive post-development fixes.

The rest of the paper is organized as follows. The
related background introductions about LQN model and
BPEL are presented in Section 2. Section 3 gives an
overview of the proposed method. The transformation
of BPEL to LQN is discussed in Section 4. A case study
of a loan approval process is given in Section 5. The

related work and conclusion are separately presented in
Section 6 and Section 7.

2 Background
2.1 LQN model

LQN model is a widely used technique for predicting
the performance of computing system. It was developed as
an extension to the QN model to handle complex
interactions among various software and hardware in
client-server distributed environment. An LQN model uses
terms such as task, host processor, entry, call and demand.
It is represented as an acyclic graph whose nodes are the
tasks which represent software entities and hardware
devices, and the arcs denote calls. A task has one or more
entries which represent operations performed by the task.
A related host processor is linked with a task to model the
physical entity that carries out the operations. Calls are
requests for service from one entry to an entry of another
task. Demand is the average amount of host processing
time and average number of calls for service operations
required to complete an entry. Detailed description of the
sequence of operations, when a task accepts a request at an
entry, can be defined by describing activities with a
precedence graph. Activities are connected together to
form a directed graph which represents one or more
execution scenarios. Execution may branch into parallel
concurrent threads of control which may or may not
execute in parallel on the target system. Execution may
also choose randomly between different paths[3]. This
semantic is consistent with BPEL.

There are six types of the connection between
activities supported by the extension of LQN, Connec-
ting, And-Fork, And-join, Or-Join, Or-Fork and Repeti-
tion. An example with an activity is given in Fig.5. It is
consistent with the relationship among activities in BPEL.

The parameters of an LQN model are as follows:

① customer (client) classes and their associated

populations or arrival rates,

②for each phase (activity) of a software task entry:

average execution time,

③for each phase (activity) making a request to a
device: average service time at the device, and average

2009 年 第 6 期 计 算 机 系 统 应 用

 59

number of visits,
④for each phase (activity) making a request to

another task entry: average number of visits,
⑤ for each request arc: average communication

delay,
⑥for each software and hardware server: scheduling

discipline.
2.2 BPEL

The business process execution language for web
services(BPEL4WS)[2] represents the uniting of two
previously competing standards: the web services flow
language(WSFL)from IBM and Microsoft’s XLANG.
Like WSFL and XLANG, BPEL4WS has been designed
to compose web services.

In BPEL4WS, the service providers and client are
defined as business partner. The service is invoked by
invoke activity. Besides invoke activity, the basic
activities include assignments, receiving requests, reply-
ing to requests, waiting for a durance of time and empty.
These basic activities are combined into structured
activities using ordinary sequential control flow
constructs like sequencing, switch constructs, and while
loops. Concurrency is provided by the flow construct.
The synchronization between concurrent activities is
achieved by using links. Each link has a source activity
and a target activity. If there is a link from one activity to
another, then the target activity can only start once the
source activity has completed. With each link a transition
condition which is a Boolean expression is associated.
Each activity has a join condition. The join condition
consists of incoming links of the activity combined by
Boolean operators. Once all the source activities
corresponding to the incoming links of an activity have
completed, the join condition of the activity is evaluated.
If the join condition evaluates to true, then the activity is
started. Otherwise, the activity will never start.

3 An Overview of Our Service Comp-
osition Performance Evaluation Frame-
work

Our service composition performance evaluation
framework is showed by Fig.2. We process XML files

produced by current service composition tools (BPEL
editors), which obviously do not support performance
profile and do not include service topology information.
Therefore, we attach those related information by hand.
Then our transformation component produces the LQN
model to the solver which generates the predication
result. The integrator may change the service
composition according the analysis result. So we give a
feedback from the result to service composition
(represented with gray arrow). But currently, we do not
implement it.

Fig.2 A component view of service composition
performance evaluation framework

The transformation traverses the BPEL program to

build the structure of the performance model. The
related business partners and the process self are
constructed as tasks for the model. The operations for the
service and process are constructed as the entries for the
related tasks. The activities in the process are transferred
to the corresponding activities for the process task. And
the related call is generated between a specific invoke
activity and the service.

The BPEL performance profile provides facility for
specifying workload characteristics and execution
parameters which are used by transformation algorithm
to define the visit ratio and execution time of the related
activity.

The visit ratio is determinate by the workload
characteristics which includes the concurrent request
number and the request type mix. We use the stochastic

 计 算 机 系 统 应 用 2009 年 第 6 期

 60

information which indicates the probability of transitions
being fired at runtime to represent the request type
distribution for the switch, pick, link etc.transition and
use the average number of the execution of the repeat
part to represent the while transition.

The execution time is directly given by the related
activity execution time in the performance profile during
transformation. The service topology is important and it
gives us information about the linkage between hardware
device(processor) and the related task during transforma-
tion.

4 LQN Generation
The inputs of the LQN generation are the BPEL

program, the related performance profile and the service
topology. The output is an LQN model which can be
analyzed by the existing LQN solvers.

The algorithm walks through the nodes of a BPEL
program and follows the listing rules to translate it to a
corresponding LQN model. The main steps of the
algorithm are:
4.1 The algorithm

① Generate the LQN model structure
a) Determine LQN tasks from the business partner

link definition (the composed services).
b) Build the linkage between tasks and hardware

devices according the service topology information.
② Generate the LQN details on entries, activities

from the BPEL
a) Add entries for the corresponding task. Each

operation in the service definition is mapped to an entry.
The Receive and the Pick with OnMessage have a
corresponding entry associated with the process task.

b) Add activities within an entry. According the
LQN definition, when a task accepts a request at an entry,
the detailed description of the sequence of operations can
be defined by describing activities with a precedence
graph. So the activities followed with this request are
transformed to the related activities of the LQN model
according the semantic of BPEL elements.

③ Traverse the LQN elements, compute their

parameters and write out the model file. The parameters
for each activity are service times and visit ratios. They

are all given by the BPEL performance profile.
4.2 Traversing the BPEL program

One important part of the transformation is
traversing the BPEL program.

There are two steps for it:
① Parse BPEL program to a graph or tree. The

model generator of the Eclipse Modeling Framework
(EMF)[6] is used here to generate a hierarchy of Java
classes from the XSD specification of BPEL4WS. These
classes represent the abstract syntax of the language and
parse the BPEL program to a set of instances of those
classes.

② Visit each node in a suitable order. When
visiting a node, a corresponding rule is applied to
implement transformation according the type of the
node. A guider is used here to make sure the order of the
visiting. To separate the action definition from the AST
classes, a visitor pattern can be exploited which
supports defining external methods for different types of
nodes.
4.3 Transformation rule

For each type of activity in BPEL, we have a
mapping rule to transform it to the corresponding activity
in LQN model.

① Basic activity is directly mapped to an activity in
the target LQN model except the invoke activity. For the
invoke activity, besides a corresponding activity, a call is
generated to the related service task entry.

② Structural activities: Sequence, while, pick,
switch, flow.

a) The sequence is directly mapping to a sequence
activity.

b) The while is mapping to a loop. If the repeat part
is a sequence, the rest of the sequence is expanded one by
one. If it is a complex structure of the activities, a
separate pseudo-task is added. And the nested activity is
added to the task.

c) The Switch and Pick is mapping to OR-fork and
OR-join.

d) Flow is mapped to a pair of AND-fork and
AND-join. If an activity is a target of link, it has a join
condition, and there is an OR-fork added as a precedence
of it and a corresponding OR-Join is added as its

2009 年 第 6 期 计 算 机 系 统 应 用

 61

subsequence showed by Fig.3. The visit ratio for each
branch is given by the distribution of the value for the
condition expression. If the activity is act as a source of
more than one links, one AND-fork is added as a
subsequence of the activity. If the activity is act as a
target of more than one links, one AND-join is added as a
subsequence of the activity. If the activity in a flow does
not act as a source of any one link, one sequence is added
between AND-fork for the flow and the activity. If the
activity in a flow does not act as a target of any link, one
sequence is added between the activity and the AND-fork
for the flow.

Fig.3 Activity with undetermined join condition
expression transformation

4.4 The parameters of LQN elements

The visitor ratio for each kind of transition can be
directly attached to the corresponding edge of the model
excepting link. To calculate the visit ratio for the target
activity of more than one link, we look each value
distribution for the link condition expression as a (0, 1)
distribution which is given by the corresponding
transition probability in performance profile. According
join condition expression, the conditional probability for
the join condition is calculated based on value
distribution of each individual link and the corresponding
visit ratio for the target activity can be acquired.

During design time, the values of the parameters are
given by the designer. After the process is deployed, the
monitoring and measurement can be applied to provide
feedback to the performance profile for the process.

5 Case study
This section gives the result of the BPEL program to

LQN transformation algorithm applied to a LoanAppr-
oval Process. The generated LQN model is solved under
the different request number at the certain request mix
distribution with an existing LQN analytic solver [7]. The
purpose of this paper is to present the proposed BPEL to
LQN transformation, so no performance analysis results
are presented here.

Fig.4 Loan approval process

The LoanApproval process is showed by Fig.4.

Two services are composed by it. One is Assessor and
another is Approver. If the request amount is lower than
1,000, the Assessor service is invoked to do the
evaluation. If the amount is higher than 1,000 or the
Assessor service reply “risk high”, the approver service is
invoked to get the approval. When the first invocation to
the approver service is failed, it will be invoked again.
But the invocation number for this service is no more
than two. If the Assessor service reply “risk low” or the
approver service reply “approved”, the loan request is
approved, otherwise is failed /rejected. The parameters
for the request mix are annotated to each transition with
value. In this process, the transitions and related values
are listed by Table 1.

 计 算 机 系 统 应 用 2009 年 第 6 期

 62

Table 1 Transactions and the related values for the
LoanApproval proces

Transaction description Probability for the
transition being fired

Link1:The loan amount is
lower than 1,000

0.3

Link2: The loan amount is
high than 1,000

0.7

Link3: The assessor return
risk low

0.24

Link4: The assessor return
risk high

0.06

While: the number of the
repeat part execution

1.2

The rectangle denotes the activity, and the rectangle
with rounded corner denotes the services are composed
by this process. The dashed arrow line denotes the link
with condition.

The LQN model automatically generated for this
process by our transformation algorithm is given in Fig.5.
The nomenclature is adopted from Chu et. al.[8]. The
entry for the LoanApproval process is “loanApproval”
and the “reply loan” is a reply activity. When it is
finished, it sends a reply to the requester that initiated the
execution of the entry. Invoke assessor and Invoke
approver separately makes one synchronous call to entry
requestAssess and requestApproval.

The model was then given as input to the analytical
LQN solver and the results for the Mean Client Response
Time for the different values of the number of clients are
obtained.

6 Related Work
To make sure a composed service in a form of

process is efficient in terms of its service time, its ability
to handle higher loads, the integrator should select the
appropriate services that have operational metrics (such
as service time, load capacity) during design stage. There
are two research directly use the service composition
model as performance model to predicate the
performance. Mathematical methods have been used by

Cardoso, Miller et al.[9] to analyze and estimate the
overall QoS of a process. But it is not flexible enough to
handle the variable workload. Another alternative for
estimating the QoS of a process is to utilize simulation
analysis[10]. Simulation can play an important role in
evaluating the quality of a process, before its actual
execution.

Fig.5 LQN model automatically generated for Loan-
Approval proces

The advantage of our method to do performance

evaluation is that it can leverage already existing LQN
research efforts to do performance evaluation of a
process by automatically transformation from a BPEL
program with performance annotation into an LQN
model. So it can use some features from LQN to make
evaluation more flexible, such as change each service
scheduling discipline.

There are also some related works which transfer a
UML model with performance annotation into an LQN

2009 年 第 6 期 计 算 机 系 统 应 用

 63

performance model based on graph-grammar[11,12]. This
approach is similar with it, but our target is service
composition model, not UML model.

7 Conclusions
SOA brings a good benefit of reuse by composing

services. But it also brings a challenge to do performance

analysis. Performance estimation can play an important

role in evaluating the performance before its actual

execution. The innovation contribution of this paper is a

method to automatically transform a composite service to

an LQN model to leverage already existing research to do

performance estimation in design stage and make sure the

consistence between design specification and perform-

ance modeling.

One kind of extension is to give more useful

feedback to service integrators when they do service

composition according the analysis result, such as which

service is the bottleneck. And another kind of extension is

to let current BPELWS specification contain performance

profile and service deployment information to make

performance predication more smoothly.

References
1 SOA definition http://www.javaworld.com/ javaworld/

jw-06-2005/jw-0613-soa.html.
2 BPEL4WS. http://www.oasis-open.org.
3 Franks R G. Performance analysis of distributed server

systems[Ph.D.dissertation].Carleton University, Otta-
wa,Ontario,Canada, 1999.

4 Hrischuk C, Rolia J, Woodside CM. Automated genera-
tion of software performance model using an
objectoriented prototype. International Workshop on

Modelling and Simulation. Analysis, Simulation of

Computer and Telecommunication Systems(MASC

OTS’95), 1995:399－409.

5 Liu TK, Kumaran S, Luo ZW. Layered Queueing

Models for Enterprise Java Beans Applications, IBM

Research Report, 2001.

6 Budinsky F, Steinberg D, Merks E, Ellersick R, Grose

TJ. Eclipse Modeling Framework. The Eclipse Series.

AddisonWesley, 2003.

7 LQN Solver. http://www.sce.carleton.ca/rads/ek-rads-

etc/software.html.

8 Chu WW, Sit CM, Leung KK. Task response time for

real-time distributed systems with resource contention.

IEEE Transactions on Software Engineering, 1991,17

(10):1076－1092.

9 Cardoso J, Amit PS, A. John M, et al. Modeling quality

of service for workflows and Web service processes.

Web Semantics Journal: Science, Services and Agents

on the World Wide Web Journal, 2004,1(3):281－308.

10 Cardoso J, Sheth A, Miller J. Workow Quality of Ser-

vice. Proceedings of the International Conf. on

Enterprise Integration and Modeling Technology and

International Enterprise Modeling, 2002.

11 Petriu DC, Shen H. Applying the UML Performance

Profile: Graph Grammar-Based Derivation of LQN

Models from UML Specifications. Computer Perfor-

mance Evaluation / TOOLS, 2002:159－177.

12 Amer H, Petriu DC. Software Performance Evalua-

tion: Graph Grammar-based Transformation of UML

Design Models into Performance Models. submitted

for publication, 2002,33.

