
2009 年 第 6 期 计 算 机 系 统 应 用

 33

从面向对象的遗留系统到面向服务架构的
迁移方法①

伍晓泉 白 琳 魏 峻 (中国科学院软件研究所 北京 100190)

Towards an Approach for Migrating Object-
Oriented Legacy System to SOA Environment

Xiaoquan Wu, Lin Bai, Jun Wei (Institute of Software, Chinese Academy of Sciences, Beijing 100190)

Abstract: Migrating legacy system with web service is an effective and economic way of reusing legacy software in a

SOA environment. In this paper, we present an approach for migrating a three-tie object-oriented legacy
system to SOA environment. The key issue of the approach is about services identification from large numbers
of classes. And we propose a bottom-up method to model the system with UML and identify services from
UML then. This approach can be a reference to an auto-migrating process.

Key words: legacy system; web service; service identification

1 Introduction
Service-Oriented Architecture (SOA) has become an

increasingly popular mechanism for achieving interoper-
ability between systems. Because it has characteristics of
loose coupling, published interfaces, and a standard
communication model[1].

Web service is a keystone of service-oriented comp-
uting. Through the web service technology, legacy
systems can be remained and integrated with other busin-
ess functions in order to get improved efficiency[2].

There are generally two strategies to migrate legacy
software into SOA environment. One is black-box
strategy. It treats the legacy system as a whole and takes
it as a part of the universe architecture. A common
solution for that is to integrate legacy systems via service
adaptors[3]. The role of the adaptors is to hide the
complexity of calling backend functions which typically
involve communication through proprietary protocols.

Another solution is to provide the runtime environment
for the legacy system. The communication between the
legacy system and its requestor is mediated by the
services deployed within the runtime environment[4]. The
adventage of black-box strategy is that only the legacy
interface is analyzed and the internals are ignored. But it
is a short-term solution with high price of maintenance
and management[2]. And it is not compatible when the
internal logic needs to be changed for new requirements.

The other strategy is white-box strategy. We should
analyze the architecture of the legacy system, extract
useful code segments from it, identify services, and then
migrate legacy code to new systems. The key is how to
identify services from legacy code. In general, there are
three approaches from the perspective of service
identification process: top-down, bottom-up, and
bidirectional[5]. In top-down approach, services are
identified from the business rules. After the services have

① Supported by the National Grand Fundamental Research 973 Program of China under Grant No.2009CB320704; the National

High-Tech Research and Development Plan of China under Grant Nos.2007AA010301, 2007AA01Z134

 计 算 机 系 统 应 用 2009 年 第 6 期

 34

been defined, useful legacy code is migrated to new
architecture [6].

Bidirectional process starts from both legacy system
and application domain. When analyzing the application
domain, a domain model can be built with UML and
business functions identified. Then legacy system model
is also built by the aid of converse engineering. Legacy
system is reengineered by comparing these two models.

In bottom-up approach, services are identified only
by analyzing the legacy systems according to the
principle of low coupling and high cohesion. If the
software entity is independent, self-contained, coarse-
grained and loose-coupled, it turns to be a candidate
service.

Bidirectional and bottom-up approaches are both
invasive to legacy system, and different legacy system
needs different modeling methods. Legacy code analysis
is one of the most important steps in these approaches. It
is troublesome to do it manually, especially for large
legacy systems. Compared with bidirectional approach,
bottom-up approach can be less human intervened,
because all the information about the services comes
from the legacy code. We argue this approach in this
paper, and apply it to object-oriented legacy system.

2 Related Work
In Ref.[7], the author reports on the development of

a methodology for the evolution of software towards new
architectures. In this approach, it represents source code
as graphs. This enables the use of graph transformation
rules, allowing the automation of the transformation
process. Prior to its model representation, the source code
is subject to a preparatory step of semi-automatic code
annotation according to the contribution of each of its
parts in the target architecture. This paper first describes
the overall methodology and then focuses on the code
annotation and model transformation parts. It is a
universal methodology and it doesn’t refer to target
architecture and specified technology.

In Ref.[8], the paper presents a concept framework
for migration of legacy systems towards Service-Oriented
Architectures. This consists of four steps:

·Code annotation categorizes

·Reverse engineering

·Redesign

·Forward engineering
First, block the source code according to the

different elements of the target architecture they will be
mapped to, then obtain a graph representation of the
annotated code; use graph transformation rules to achieve
the target architecture and then generate the target code.
But it doesn’t distinct the source code which will be
mapped to different elements, like UI, business logic and
data.

Ref.[2] proposes a reengineering approach which
applies an improved agglomerative hierarchical cluster-
ing algorithm to restructure legacy code and to facilitate
legacy code extraction for web service construction. It is
bidirectional. A dendrogram is obtained after executing
the algorithm on legacy code.

3 A Bottom-up Approach for Migrating
Object-Oriented Legacy System to SOA

In this bottom-up approach, we first analyze the
architecture of the legacy systems, extract useful legacy
code segments, model the legacy systems with UML
class diagrams, and then identify services from UML
diagrams. At last, we migrate the legacy code to web
service environment with glue code. In this section, we
describe the approach in steps.

In the object-oriented software, classes can be
classified into five categories[9]:

·User Interface (UI) class
Encapsulate the elements, such as HTML pages,

GUI screens, and printed/electronic reports that make up
the user interface for your system.

·Business/domain class
Also known as entity classes, implementing the

fundamental domain types within your application.
·Process class
Implement complex business logic, which can

contribute to a potential service that pertains to several
classes.

·Persistence class

Encapsulate access to your persistent stores,

2009 年 第 6 期 计 算 机 系 统 应 用

 35

including relational databases, flat files, and object bases.

·System class
Encapsulate technical features, such as your approa-

ch to inter process communication or error logging.
These classes can be mapped to a three-tier software

architecture: UI, DATA, and LOGIC.
UI User Interface (UI) class

DATA Persistence class

Business/domain class LOGIC

Process class

(System
dependent)

System class

System classes are platform-dependent. It is always
related to the runtime environment of the software and is
out of the scope of this paper.

We will discuss our migrating approach based on the
left three tiers: UI, DATA and LOGIC.
3.1 User interface tier

For some complex UI system, such as GUI screens,
UI is platform dependent. It will invoke operating system
API, and create the windows graphs in local. So we can
extract this part as the service requestor.

Another type of UI is web page. Various different
technologies can be used in creating web pages. Some of
these are: Hyper Text Markup Language (HTML),
Extensible Markup Language (XML), Cascading Style
Sheets (CSS) and Synchronized Multimedia Interaction
Language (SMIL). Dynamic web pages can be using Java
Server Pages (JSP), PHP or Active Server Pages (ASP).
Extensible Style sheet Language for Transformations
(XSLT) can be used for translating XML documents into
other languages (like HTML or WML) or into other XML
dialects. Multimedia and graphical content can be
presented using Scalable Vector Graphics (SVG),
Synchronized Multimedia Interaction Language (SMIL),
Virtual Reality Modeling Language (VRML) or various
other open standard based technologies. Some property
formats are also commonly used, such as Flash and
Shockwave by Macromedia Inc.

For these, we can also wrap it with web service. From
the technology perspective, the idea is to identify the

common control element, such as button and textbox,
describe the layout of the control elements as XML forms,
output it with web service, and then resolve it in local.
3.2 Data tier

The data tier stores long-term data, such as
information on users, bank accounts, inventory informa-
tion-typically mainly real world data. This data is stored
normally in a Relational Database Management System
(RDBMS) on its own server. In some instances, other
data storage solutions can also be used such as
fileservers, complete legacy systems or other remote
systems. This tier may be implemented in one of several
ways, including but not limited to hardcode SQL, data
access classes such as Java Data Objects (JDOs), a
service such as EJB's container-managed persistence
(CMP), or one or more Web services. Take the view of
web services, this tier need to handle with considerable
amount of data, but the operation is relative simple, only
containing Insert, Delete, Modify, Query and so on.

To wrap simple data source with web service, we
should describe the data structure as XML forms, and
exposure Insert, Delete, Modify and Query as the
operations of the service.

But for multi data source, we should consider how
to manage and access that data from inhomogeneous data
source. Often the middleware is introduced to
encapsulate data sources and mediate between them and
the middleware [10].

Besides we should also take data coherence, security
and performance into account.

Data coherence means we should use the legacy data
without destroying it when other applications are
handling the same data.

Data security means we should decide who can access
the data. Legacy system often certifies the role internally.
After wrapping it with web service, we may not only
certify the role in service, but also identify the role who
can invoke the web service. We can also encrypt the soap
message to make it security in data transfers.

Because of the low performance of xml transfer,
when handling with large amount of data, we should
consider the performance, too.
3.3 Logic tier

This tier contains most business rules and often the

 计 算 机 系 统 应 用 2009 年 第 6 期

 36

most complex parts of a software system.
Before the migration, we should assess the legacy

systems. The assessment reveals the current status of a
legacy system and specifies which phase it is in its lifecycle.

We first build the diagram description of the
program in UML by converse engineering and extract
useful code segments and discard dead code. And then
identify the service by analyzing the contract of classes
and domain packages. At last, we migrate the legacy
systems to web service in the source-to-source level.
3.3.1 Source code decomposition

Because not all the software can be clearly divided
into the five types of classes referred above, we should
tidy the legacy code first. For example, separate business
logic from presentation logic, and then categorize the
source code according to the different elements of the
target architecture they shall be mapped to.
3.3.2 System modeling with UML

The second step is to model the legacy software.
The advantage of obtaining a graph representation of the
legacy code is that graph transformation rules can be
used to identify the services. UML is the universal
language for modeling an object-oriented system. Some
software tools can convert source code to UML class
diagram automatically. The UML diagram presents the
system more intuitionist than source code. From the
model of the legacy systems, we can extract the useful
classes which need to be migrated to web services, and
omit other classes in the diagrams.
3.3.3 Service identification

In Ref.[9], Ambler proposed a method for deriving
web services from UML models. Ambler’s method is an
example of a bottom-up web service design approach that
defines web services on top of existing components or
objects and is useful for migration to service-oriented
architectures. The main focus of this method is grouping
highly coupled classes into coarser components called
domain packages, and refining the resulting component
interfaces to produce larger grained services that are
exported as web services. The process of identify contract
and domain packages is manual. We use his definition of
contract, and import graph theory to analyze the UML
class diagrams and identify the services semi-
automatically.

A contract is any behavior of an object that other
objects can request. In other words, it is an operation that
directly responds to a message from other classes.

In the UML class diagram, classes can be seemed as
vertexes, and the lines between classes are the edges.

·Simplify hierarchies
For the sake of identifying services, inheritance and

aggregation hierarchies can often be simplified. If we only
take inheritance into account, the class diagram will
contain many separate trees. Analyze the public functions
of the classes. If they don’t introduce a new contract, they
will be ignored. And sometimes the tree can be seened as a
single vertex. For aggregation hierarchies, it is an
undirected graph. If the sub graph contains nothing about
business rules, it should be ignored as “part classes”.

·Identify class contracts
For classes, contracts define the external interface,

also known as the public interface of a class. You can
ignore all the operations that aren’t class contracts for the
sake of simplicity, because they don’t contribute to
communication between classes distributed in different
packages

·Identify potential domain packages
In the graph theory, the outdegree and indegree of a

vertex represent the relationship with other vertexes. And
in the class diagram, more lines between classes mean
higher cohesion. We could separate the classes into
different packages, and minimize the edges connected
with other packages. One of the key goals is to organize
the design into several packages in such a way as to
reduce the amount of information flowing between them.
At the same time, we should modify the partition to avoid
reasonless partition.

·Define domain-package contracts
Domain-package contracts are those class contracts

that are accessed by classes outside of a domain package.
It's important to make sure that contracts of a package are
cohesive, that is, it makes sense to put them together. If
the contracts do not make sense as a group, then you
should distribute them into multiple packages.

·Define services
The domain packages and sub graphs are all the

candidate services. To define services, we should first

2009 年 第 6 期 计 算 机 系 统 应 用

 37

analyze the domain-package contracts, and then take the
proper contracts as the operations of a service. You can
also combine and split, and make the service definition
more reasonable.
3.3.4 Code migration

Code migration is a source-to-source transformation.
The aim of this process is to extract interface of WSDL
(Web Services Description Language), which is used to
describe the web service and wrap parameters of the
operations with XML data. And glue code should be
designed to combine some interfaces as an operation.

Now there are many tools which can generate
WSDL file from class file or COBOL automatically, but
usually the information is required to come from only
one file. So you should write a new class, and invoke the
operations identified in this class.

Fig.1 The framework of the wrapping method

The general approach is shown in Fig.1. We first use

converse engineering to model the legacy software, then
analyze the class contract among the class from UML
diagram. After that, we identify services with the aid of
domain packages and wrap them in source code level.

4 Case Study
OnceBPD is a business process designer. Users can

draw BPMN diagram with it. It can also translate BPMN
files to BPEL files and deploy the process on a BPEL
engine. It is developed with JAVA language in Eclipse

platform. We migrate it to a SOA architecture and take it
as an example of applying and validating the whole
method.

The architecture of this software includes two tiers:
UI and Logic. First we separate user interface from
business logic part. We extract the function of drawing
BPMN diagram and take this part as the client to invoke
service. Then wrap the other part as web services.

Then we model the business logic classes with UML
class diagram. We use eclipse plug-in Agile[11] to build
the UML class diagrams automatically. The diagram is
shown in Fig.2. After reorganizing the classes in the
diagram, we can find three sub diagrams. (Some
operations executed by eclipse do not appear in the
diagram.) It shows that the three parts are low-coupled
and can be viewed as service candidates.

Now we just take one of the sub diagrams to
practice the other steps which is selected in Fig.3. To
make it clear, the operations of the classes are ignored.

We enlarge the selected sub diagrams in Fig.4. The
“part classes” WSClient can be omitted. After
reorganizing, we can clearly see that the classes named
Mapping, NSStack, Utility and FileReader form a class
hierarchy, which can be treated as a single class.

The next step is to identify class contracts. They are
usually the public operations which are invoked by other
objects. The lines in the diagram show the relationships
between classes. And we could identify domain packages
according to the lines, because they represent the
cohesion and coupling between classes.

We can separate the classes into two domain
packages shown in Fig.5. Two services Deploy and
ParseWSDL are identified. The operations of the services
are listed as follows:

deploy Deploy

undeploy

getPortTypes

getPortType

getParterLink

PraseWSDL

……

 计 算 机 系 统 应 用 2009 年 第 6 期

 38

Fig.2 Auto-generated UML class diagrams of OnceBPD

Fig.3 Select one of the sub diagram

Fig.4 Reorganized sub diagram

At last, we transform the source code to the new
architecture. Create a new class for each service and
create the identified operations to invoke the related
operations in other classes. This class is built for the
convenient of generate WSDL with software tools. We
examine the parameters of the operation and present them
with XML form. Then we create the WSDL description
of services with axis2 java2wsdl [12].

Fig.5 Domain packages

5 Conclusion and Future Work
In this paper, we presented and implemented an

approach for migrating object-oriented software with web

services in a bottom-up way. When analyzing the

architecture of the legacy systems, the program can be

mapped to different elements like UI, data and logic tier.

We can migrate them to web service environment

separately. Now the process can be finished semi-

automatically with the aid of software tools in the phases

of modeling legacy systems with UML diagrams and

generating WSDL files.

In this approach, we take cohesion and coupling into

account to identify services. By the help of graph theory,

the process can be realized automatically. At least a

candidate solution can be given. The advantage of the

approach is that it can be an effective assistant when the

scale of the system is too large to cope with.

But there are still many difficulties in realizing the

2009 年 第 6 期 计 算 机 系 统 应 用

 39

process in a fully automated manner such as how to

identify the operations of the service exactly, how to

convert parameters to XML forms, how to generate

source code automatically and so on.

Another problem is how to apply this method

universally to more legacy systems with various types of

architectures. We will try to solve these problems in the

future.

References
1 Balasubramaniam S, Ed Morris GAL, Simanta S, Smith

D. SMART: Application of a Method for Migration of
Legacy Systems to SOA Environments. Heidelberg
SB. ICSOC 2008. Springer Berlin Heidelberg, 2008.

2 Zhang Z, Yang H. Incubating services in legacy
systems for architectural migration. Software Engine-
ering Conference, 11th Asia-Pacific, 2004.

3 Bhattacharya S. Integrate legacy systems into your
SOA initiative. http://www.ibm.com/developerworks/
webservices/library/ws-soa-legacyapps/S_CMP=cn-a-a
ix&S_TACT=105AGX52.

4 Bali B, Bubak M, Wegiel M. A Solution for Adapting
Legacy Code as Web Services. Component Models and
Systems for Grid Applications, 2005:57－75

5 Nuffel DV. Towards a Service-Oriented Methodology:
Business-Driven Guidelines for Service Identifica-
tion. Meersman R, Tari Z, Herrero P. OTM Work-
shops(1).Springer:294-303.

6 Linthicum DS. Next Generation Application Integra-
tion: From Simple Information to Web Services. Addi-
sonWesley Longman Publishing Co., Inc, 2003:512.

7 Correia R, Matos C, Heckel R, El-Ramly M. Archi-
tecture Migration Driven by Code Categorization.
Software Architecture, 2007:115－122.

8 Matos C. Service Extraction from Legacy Systems.
Graph Transformations, 2008:505－507.

9 Ambler. Deriving Web services from UML models,
2002.

10 Roth, M. T. A Wrapper Architecture for Legacy Data
Sources. http://www.almaden.ibm.com/cs/garlic/vldb
97wraprj.ps.

11 http://www.agilej.com/
12 http://ws.apache.org/axis2/

