Polymer Flooding Well Group Splitting Based on Improved Bald Eagle Search Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Given the insufficient adaptability of existing polymer dosage splitting algorithms when dealing with well groups in different blocks, this study proposes a polymer flooding well group splitting method based on an improved bald eagle search algorithm. Firstly, the preliminary splitting coefficients are obtained through grey correlation analysis. Then, the difference between the cumulative injection volume and the actual fluid production volume of each extraction well is calculated, and a reasonable threshold range and constraint conditions are set. Secondly, the bald eagle search algorithm is improved by introducing Sobol sequence and ICMIC mapping, golden sine Lévy flight guidance mechanism, nonlinear convergence factor, and adaptive inertia weighting strategy, which enhances the algorithm's searching capability and convergence accuracy. Finally, the improved bald eagle search algorithm is used to solve the optimization model of well group splitting coefficients in the actual block of an oilfield. The results show that the calculated splitting injection volume has a high degree of agreement with the actual fluid production volume and has good splitting accuracy.

    Reference
    Related
    Cited by
Get Citation

张强,陈诚,李青,薛冰.基于改进秃鹰搜索算法的聚合物驱油井组劈分.计算机系统应用,,():1-10

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 30,2024
  • Revised:September 03,2024
  • Adopted:
  • Online: December 19,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063