Image Dehazing Algorithm Based on Transformer and Gated Fusion Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Aiming at the existing image dehazing algorithms which still have problems such as incomplete dehazing, blurred edges of dehazed images, and detail information loss, this study presents an image dehazing algorithm based on Transformer and gated fusion mechanism. Global features of the image are extracted by the improved channel self-attention mechanism to improve the efficiency of the model in processing images. A multi-scale gated fusion block is designed to capture features of different scales. The gated fusion mechanism improves the adaptability of the model to different degrees of dehazing by dynamically adjusting weights while better preserving the image edges and detail information. Residual connections are used to enhance the reusability of features and improve the generalization ability of the model. Experimental verification shows that the proposed dehazing algorithm can effectively restore the content information in real hazy images. On the synthesized hazy image dataset SOTS, the peak signal-to-noise ratio reaches 34.841 dB, and the structural similarity reaches 0.984. The dehazed image has complete content information without blurred detail information and incomplete dehazing.

    Reference
    Related
    Cited by
Get Citation

王燕,陈燕燕,刘晶晶,胡津源.基于Transformer和门控融合机制的图像去雾算法.计算机系统应用,,():1-10

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 22,2024
  • Revised:September 03,2024
  • Adopted:
  • Online: December 09,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063