Abstract:Image steganalysis aims to detect whether an image undergoes steganography processing and thus carries secret information. Steganalysis algorithm based on Siamese networks determines whether an image carries secret information by calculating the dissimilarity between the left and right partitions of the image to be detected. This approach currently boasts relatively high accuracy among deep learning image steganalysis algorithms. However, Siamese network-based image steganalysis algorithms still have certain limitations. First, the convolutional blocks stacked in the preprocessing and feature extraction layers of the Siamese network overlook the issue of steganographic signals easily being lost as they are transmitted from shallow to deep layers. Second, SRM filters used in existing Siamese networks still employ high-pass filters from other networks to suppress image content, ignoring single-sized generated residual maps. To address the above problems, this study proposes a Siamese network image steganalysis method based on enhanced residual features. The proposed method designs an attention-based inverted residual module. By adding the attention-based inverted residual module after the convolutional blocks in the preprocessing and feature extraction layers, it reuses image features, introduces an attention mechanism, and enables the network to assign more weights to feature maps of complex-textured image regions. Meanwhile, to better suppress image content, a multi-scale filter is proposed, adjusting the residual types to operate with convolutional kernels of different sizes, thereby enriching residual features. Experimental results show that the proposed attention-based inverted residual module and multi-scale filter provide better classification performance compared to existing methods.