Hierarchical Text Classification for Label Co-occurrence and Long-tail Distribution
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    There are two problems in existing hierarchical text classification model: underutilization of the label information across hierarchical instances, and lack of handling unbalanced label distribution. To solve these problems, this study proposes a hierarchical text classification method for label co-occurrence and long-tail distribution (LC-LTD) to study the global semantic of text based on shared labels and balanced loss function for long-tail distribution. First, a contrastive learning objective based on shared labels is devised to narrow the semantic distance between text representations with more shared labels in feature space and to guide the model to generate discriminative semantic representations. Second, the distribution balanced loss function is introduced to replace binary cross-entropy loss to alleviate the long-tail distribution problem inherent in hierarchical classification, improving the generalization ability of the model. LC-LTD is compared with various mainstream models on WOS and BGC public datasets, and the results show that the proposed method achieves better classification performance and is more suitable for hierarchical text classification.

    Reference
    Related
    Cited by
Get Citation

智媛,雷海卫,张斌龙.面向标签共现和长尾分布的层级文本分类.计算机系统应用,,():1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 29,2024
  • Revised:August 20,2024
  • Adopted:
  • Online: November 28,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063