3D Trajectory Planning for Unmanned Aerial Vehicle Formation Based on SPER-TD3
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In complex terrain conditions, UAV formation path planning based on deep reinforcement learning can optimize the path of UAV formation, with better path length and environmental adaptability than traditional heuristic algorithms. However, it still has problems such as insufficient training stability and poor real-time planning. For UAV clusters with a leader-follower mode, this study proposes a real-time 3D path planning method for UAV formation based on the SPER-TD3 algorithm. Firstly, the prioritized experience replay mechanism based on SumTree is integrated into the TD3 algorithm, and the SPER-TD3 algorithm is designed to determine the path of the UAV formation. Then, an angle formation control method is used to optimize the path of the followers, and a dynamic path smoothing algorithm is applied to optimize the steering angle. To accelerate the training convergence speed and stability of the SPER-TD3 algorithm, and solve the long-term dependence problem, a network model structure combining LSTM, self-attention mechanism, and multiple perceptrons is designed. Simulation experiments are conducted in environments with various obstacles. Results show that the method mentioned above is superior to eight mainstream deep reinforcement learning algorithms in terms of path safety coverage rate, flight path smoothness, success rate, and reward size. Its comprehensive evaluation value of importance is 8.5% to 72.9% higher than existing methods, and it has the best training stability.

    Reference
    Related
    Cited by
Get Citation

彭博,王晓波,魏祥麟,成洁,秦华旺,范建华.基于SPER-TD3的无人机编队三维航迹规划.计算机系统应用,,():1-13

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 10,2024
  • Revised:August 01,2024
  • Adopted:
  • Online: December 19,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063