Dependent Task Offloading in Mobile Edge Computing Assisted by Unmanned Aerial Vehicle
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In computation-intensive and latency-sensitive tasks, unmanned aerial vehicle (UAV)-assisted mobile edge computing has been extensively studied due to its high mobility and low deployment costs. However, the energy consumption of UAVs limits their ability to work for extended periods, and there are often dependencies among different modules within offloading tasks. To address these issues, directed acyclic graph (DAG) is utilized to model the dependencies among internal modules of tasks. Considering the impacts of system latency and energy consumption, an optimal offloading strategy is derived to minimize system costs. To achieve optimization, a binary grey wolf optimization algorithm based on subpopulation, Gaussian mutation, and reverse learning (BGWOSGR) is proposed. Simulation results show that the proposed algorithm reduces system costs by around 19%, 27%, 16%, and 13% compared to four other methods, with a faster convergence speed.

    Reference
    Related
    Cited by
Get Citation

李贵勇,廖福建,田旭.无人机辅助MEC中的依赖性任务卸载.计算机系统应用,,():1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 05,2024
  • Revised:July 25,2024
  • Adopted:
  • Online: December 06,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063