Remote Sensing Image Super-resolution Reconstruction Based on Multi-distillation and Transformer
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Existing super-resolution reconstruction methods based on convolutional neural networks are limited by their receptive fields, which makes it difficult to fully utilize the rich contextual information and auto-correlation in remote sensing images, resulting in suboptimal reconstruction performance. To address this issue, this study proposes a novel network, termed MDT, a remote sensing image super-resolution rebuilding method based on multi-distillation and Transformer. Firstly, the network combines multiple distillations with a dual attention mechanism to progressively extract multi-scale features from low-resolution images, thereby reducing feature loss. Next, a convolutional modulation-based Transformer is constructed to capture global information in the images, recovering more complex texture details and enhancing the visual quality of the reconstructed images. Finally, a global residual path is added during upsampling to improve the propagation efficiency of features within the network, effectively reducing image distortion and artifacts. Experiments conducted on the AID and UCMerced datasets demonstrate that the proposed method achieves a peak signal-to-noise ratio (PSNR) and a peak structural similarity index (SSIM) of 29.10 dB and 0.7807, respectively, on ×4 super-resolution tasks. The quality of the reconstructed images is significantly improved, with better visual effects in terms of detail preservation.

    Reference
    Related
    Cited by
Get Citation

王军,陈莹莹,程勇.基于多重蒸馏与Transformer的遥感图像超分辨率重建.计算机系统应用,,():1-12

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2024
  • Revised:July 25,2024
  • Adopted:
  • Online: December 06,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063