Root Cause Analysis Based on Association Mining Between Accident Report and Indicator
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [27]
  • |
  • Related [3]
  • | | |
  • Comments
    Abstract:

    This study proposes an analysis method based on association mining between historical accident reports and a root cause index system to fully leverage experts’ experience in root cause analysis of past accidents and enhance the accuracy and comprehensiveness of such analysis, thereby reducing chemical safety incidents. By constructing an association matrix between accident reports and the index system, this method utilizes a pre-trained model to represent accident and index texts. It integrates secondary and tertiary index information based on an attention mechanism and finally employs a graph convolutional neural network for root cause analysis. Validation on a dataset of 1351 samples demonstrates that this method significantly improves the accuracy of root cause prediction, effectively utilizing expert analysis of historical accidents to analyze current accidents and uncover the limitations in previous accident analysis. Additionally, this method accurately identifies the root causes of accidents even with incomplete incident descriptions. The application of this method will enhance accident prevention and risk management in occupational safety.

    Reference
    [1] Wang JH, Fu G, Yan MW. Comparative analysis of two catastrophic hazardous chemical accidents in China. Process Safety Progress, 2020, 39(1): e12137.
    [2] 王媛媛, 师立晨, 王如君, 等. 化工和煤矿行业安全管理对比分析与对策建议研究. 中国安全生产科学技术, 2021, 17(S1): 172–176.
    [3] 徐国飞. 关于国内化工企业安全评价方法探讨. 当代化工研究, 2022(1): 10–12.
    [4] 王延平, 卢均臣, 张婷, 等. 化工事故逻辑树法研究与应用. 安全、健康和环境, 2015, 15(9): 1–4.
    [5] 卜全民, 王涌涛, 汪德爟. 事故树分析法的应用研究. 西南石油大学学报, 2007, 29(4): 41–144.
    [6] Kabir S. An overview of fault tree analysis and its application in model based dependability analysis. Expert Systems with Applications, 2017, 77: 114–135.
    [7] 邹吉然, 侯蕊, 朱炳旭. 故障树分析法在化工安全评价的应用. 山东工业技术, 2016(16): 46.
    [8] American Institute of Chemical Engineers. Guidelines for Chemical Process Quantitative Risk Analysis. 2nd ed., New York: American Institute of Chemical Engineers, 2000.
    [9] Ruijters E, Stoelinga M. Fault tree analysis: A survey of the state-of-the-art in modeling, analysis and tools. Computer Science Review, 2015, 15–16: 29–62.
    [10] 张静涛. 安全检查表法在危险化学品罐区安全评价中的应用. 中小企业管理与科技, 2020(8): 162–163.
    [11] 王婕, 林柏泉, 茹阿鹏. 因果图分析法应用于液氯泄漏事故分析. 安全与环境工程, 2005, 12(3): 78–80, 90.
    [12] 李艳昌, 刘哲含, 贾进章. 2006–2015年我国化工企业生产事故统计分析. 应用化工, 2017, 46(8): 1620–1623.
    [13] 胡万吉. 2009–2018年我国化工事故统计与分析. 今日消防, 2019, 4(2): 3–7.
    [14] 万婧, 容振乾, 赵远飞, 等. 2010–2019年我国化工行业较大以上生产安全事故统计分析及启示. 工业安全与环保, 2021, 47(5): 59–63.
    [15] 张圣柱, 王旭, 魏利军, 等. 2016–2020年全国化工和危险化学品事故分析研究. 中国安全生产科学技术, 2021, 17(10): 119–126.
    [16] 马丽. 化工事故技术分析方法. 化工设计通讯, 2018, 44(1): 235.
    [17] 杨小峰. 化工企业生产事故分析及对策研究. 化工设计通讯, 2022, 48(12): 160–162.
    [18] 武妍, 王守觉. 一种通过反馈提高神经网络学习性能的新算法. 计算机研究与发展, 2004, 41(9): 1488–1492.
    [19] 陈国华, 安霆, 陈培珠. 危险化学品事故多米诺效应历史数据研究评述. 中国安全生产科学技术, 2015, 11(4): 64–70.
    [20] He XN, Deng K, Wang X, et al. LightGCN: Simplifying and powering graph convolution network for recommendation. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020. 639–648.
    [21] 吴红, 王晓明, 王斌, 等. PSO-SVM模型在化工事故风险预测中的应用研究. 工业安全与环保, 2022, 48(4): 70–73.
    [22] 杨静, 张楠男, 李建, 等. 决策树算法的研究与应用. 计算机技术与发展, 2010, 20(2): 114–116, 120.
    [23] 杨杰, 牛立杰. 基于LDA主题模型的建设安全管理研究. 建设科技, 2022(24): 59–63.
    [24] Lekshmi Priya T, Sandhya H. Matrix factorization for recommendation system. Proceedings of the 2019 International Conference on Artificial Intelligence and Data Engineering. Singapore: Springer, 2019. 267–280.
    [25] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. arXiv:1609.02907, 2016.
    [26] Wang X, He XN, Wang M, et al. Neural graph collaborative filtering. Proceedings of the 42nd International ACM SIGIR conference on Research and Development in Information Retrieval. New York: ACM, 2019. 165–174.
    [27] Wang X, Jin HY, Zhang A, et al. Disentangled graph collaborative filtering. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020. 1001–1010.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

陈鹏运,房敏营,侯孝波,杜军威.面向事故报告与指标项关联挖掘的根原因分析.计算机系统应用,2025,34(2):272-280

Copy
Share
Article Metrics
  • Abstract:109
  • PDF: 380
  • HTML: 91
  • Cited by: 0
History
  • Received:June 22,2024
  • Revised:July 18,2024
  • Online: December 16,2024
Article QR Code
You are the first991369Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063