PAF-Net: Parallel Attention Network for Efficient Sacroiliac Joint Segmentation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A lesion of the sacroiliac joint is one of the primary signs for the early warning of ankylosing spondylitis. Accurate and efficient automatic segmentation of the sacroiliac joint is crucial for assisting doctors in clinical diagnosis and treatment. The limitations in feature extraction in sacroiliac joint CT images, due to diverse gray levels, complex backgrounds, and volume effects resulting from the narrow sacroiliac joint gap, hinder the improvement of segmentation accuracy. To address these problems, this study proposes the first U-shaped network for sacroiliac joint segmentation diagnosis, utilizing the concept of hierarchical cascade compensation for downsampling information loss and parallel attention preservation of cross-dimensional information features. Moreover, to enhance the efficiency of clinical diagnosis, the traditional convolutions in the U-shaped network are replaced with efficient partial convolution blocks. The experiment, conducted on a sacroiliac joint CT dataset provided by Shanxi Bethune Hospital, validates the effectiveness of the proposed network in balancing segmentation accuracy and efficiency. The network achieves a DICE value of 91.52% and an IoU of 84.41%. The results indicate that the improved U-shaped segmentation network effectively enhances the accuracy of sacroiliac joint segmentation and reduces the workload of medical professionals.

    Reference
    Related
    Cited by
Get Citation

严武军,王家辉,邱瑜茹. PAF-Net: 用于骶髂关节高效分割的并行注意力网络.计算机系统应用,,():1-8

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 05,2024
  • Revised:June 28,2024
  • Adopted:
  • Online: November 15,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063