Cigarette Laser Code Recognition Based on Dual-state Asymmetric Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Cigarette laser code recognition is an important tool for tobacco inspection. This study proposes a method for recognizing cigarette codes based on a dual-state asymmetric network. Insufficient training on samples of distorted cigarette codes leads to the weak generalization ability of the model. To address this issue, a nonlinear local augmentation (NLA) method is designed, which generates effective training samples with distortion to enhance the generalization ability of the model through spatial transformation using controllable datums at the edges of cigarette codes. To address the problem of low recognition accuracy due to the similarity between cigarette codes and their background patterns, a dual-state asymmetric network (DSANet) is proposed, which divides the convolutional layers of the CRNN into training and deployment modes. The training mode enhances the key feature extraction capability of the model by introducing asymmetric convolution for optimizing feature weight distribution. For real-time performance, the deployment mode designs BN fusion and branch fusion methods. By calculating fusion weights and initializing convolutional kernels, convolutional layers are equivalently converted back to their original structures, which reduces user-side inference time. Finally, a self-attention mechanism is introduced into the loop layer to enhance the extraction capability of the model for cigarette code features by dynamically adjusting the weights of sequence features. Comparative experiments show that this method has higher recognition accuracy and speed, with the recognition accuracy reaching 87.34%.

    Reference
    Related
    Cited by
Get Citation

梁尚荣,王慧琴,马琦,王可,文钰栋.基于双态非对称网络的卷烟激光码识别.计算机系统应用,,():1-12

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 03,2024
  • Revised:June 28,2024
  • Adopted:
  • Online: November 15,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063