Remaining Time Prediction Based on Improved Transformer
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Remaining time prediction helps enterprises improve the quality and efficiency of business process execution. Although existing deep learning methods have shown improvement in remaining time prediction, they still face challenges when dealing with complex business processes. These challenges include insufficient utilization of time features and limited ability to extract local features, leaving room for improvement in prediction accuracy. This study proposes a remaining time prediction method based on the improved Transformer encoder model. Existing methods ignore event time features and struggle to capture local dependencies. To address these limitations, this study introduces a time feature encoding module and a local dependency enhancement module into the model. The time encoding module constructs a semantically rich and discriminative event time representation by embedding learning and multi-granularity concatenation. The local dependency enhancement module uses convolutional neural networks to extract fine-grained local features from the trajectory prefix after processing with the Transformer encoder. Experiments show that integrating time features and local dependency enhancement improves the prediction accuracy of the remaining time for complex business processes.

    Reference
    Related
    Cited by
Get Citation

刘海洲,高俊涛.基于改进Transformer的剩余时间预测.计算机系统应用,,():1-9

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 29,2024
  • Revised:June 28,2024
  • Adopted:
  • Online: October 31,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063