Abstract:Multi-agent collaboration plays a crucial role in the field of reinforcement learning, focusing on how agents cooperate to achieve common goals. Most collaborative multi-agent algorithms emphasize the construction of collaboration but overlook the reinforcement of individual decision-making. To address this issue, this study proposes an online reinforcement learning model, BiTransformer memory (BTM), which not only considers the collaboration among multiple agents but also uses a memory module to assist individual decision-making. The BTM model is composed of a BiTransformer encoder and a BiTransformer decoder, which are utilized to improve individual decision-making and collaboration within the multi-agent system, respectively. Inspired by human reliance on historical decision-making experience, the BiTransformer encoder introduces a memory attention module to aid current decisions with a library of explicit historical decision-making experience rather than hidden units, differing from the conventional RNN-based method. Additionally, an attention fusion module is proposed to process partial observations with the assistance of historical decision experience, to obtain the most valuable information for decision-making from the environment, thereby enhancing the decision-making capabilities of individual agents. In the BiTransformer decoder, two modules are proposed: a decision attention module and a collaborative attention module. They are used to foster potential cooperation among agents by considering the collaborative benefits between other decision-making agents and the current agent, as well as partial observations with historical decision-making experience. BTM is tested in multiple scenes of StarCraft, achieving an average win rate of 93%.