Identification of Lung Cancer Lymph Node Metastasis Based on Label Noise Contrastive Learning
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The AI diagnostic model based on deep learning relies heavily on high-quality detailed annotated data for algorithm training, but is affected by label noise information. To enhance the robustness of the model and prevent noisy label memory, a noise label sample selection (NLSS) model is proposed to fully mine the hidden information of noise samples and alleviate model overfitting. Firstly, distributed feature representations of the image are extracted by taking hybrid enhanced images as input. Secondly, the contrasive loss function is introduced to compare the similarity between the predicted label distribution of the sample and the real label distribution for sample evaluation and selection. Finally, based on sample selection, supervised information of the noisy label is re-corrected by the pseudo-label promotion strategy of the label redistribution module. Taking the PET/CT dataset of non-small cell lung cancer (NSCLC) patients as an example, results show that the proposed models outperform comparison models, reducing the interference of label noise in the diagnosis of lymph node metastasis.

    Reference
    Related
    Cited by
Get Citation

祁婧,李子荣,刘秀婷,马露,陈俊豪.基于标签噪声对比学习的肺癌淋巴结转移鉴别.计算机系统应用,,():1-8

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 22,2024
  • Revised:June 17,2024
  • Adopted:
  • Online: October 25,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063