Lightweight Citrus Maturity Detection Based on Improved YOLOv8n
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [21]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    To achieve intelligent citrus picking, fast and accurate identification of citrus in the orchard environment becomes critical. Aiming at the defective adaptation of existing target detection algorithms to the environment and low efficiency, this study proposes a lightweight citrus maturity detection algorithm based on the YOLOv8n model, YOLOv8n-CMD (YOLOv8n citrus maturity detection). Firstly, the backbone network structure is optimized to improve the detection of small targets. Secondly, the CBAM attention mechanism is added to improve the classification effect of the model. Then, Ghost convolution is introduced, and the neck C2f module in the original YOLOv8 model is combined with Ghost to reduce the amount of computation and that of parameters. Finally, the SimSPPF module is used in place of the original pyramidal pooling layer to improve model detection efficiency. Experimental results show that the YOLOv8n-CMD algorithm reduces the number of parameters and computation by 31.8% and 7.4%, respectively, and improves the accuracy by 3.0%, which is more suitable for citrus detection research in the orchard environment.

    Reference
    [1] 郭文武, 叶俊丽, 邓秀新. 新中国果树科学研究70年——柑橘. 果树学报, 2019, 36(10): 1264–1272.
    [2] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [3] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2015. 1440–1448.
    [4] Ren SQ, He KM , Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.
    [5] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision (ECCV 2016). Amsterdam: Springer, 2016. 21–37.
    [6] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas: IEEE, 2016. 779–788.
    [7] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Honolulu: IEEE, 2017. 6517–6525.
    [8] Redmon J, Farhadi A. YOLOv3: An incremental improvement. arXiv:1804.02767, 2018.
    [9] Wang CY, Bochkovskiy A, Liao HYM. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. arXiv:2207.02696, 2022.
    [10] 顾伟, 王巧华, 李庆旭, 等. 基于改进SSD的棉种破损检测. 华中农业大学报, 2021, 40(3): 278–285.
    [11] 薛月菊, 黄宁, 涂淑琴, 等. 未成熟芒果的改进YOLOv2识别方法. 农业工程学报, 2018, 34(7): 173–179.
    [12] Tian YN, Yang GD, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model. Computers and Electronics in Agriculture, 2019, 157: 417–426.
    [13] 熊俊涛, 郑镇辉, 梁嘉恩, 等. 基于改进YOLOv3网络的夜间环境柑橘识别方法. 农业机械学报, 2020, 51(4): 199–206.
    [14] 王晨, 袁庆霓, 白欢, 等. 面向仓储货物的轻量化目标检测算法. 激光与光电子学进展, 2022, 59(24): 2410007.
    [15] 王梦妮, 顾寄南, 王化佳, 等. 基于改进YOLOv5s模型的茶叶嫩芽识别方法. 农业工程学报, 2023, 39(12): 150–157.
    [16] Tan MX, Pang RM, Le QV. EfficientDet: Scalable and efficient object detection. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Seattle: IEEE, 2020. 10778–10787.
    [17] 张瑶, 陈姚节. 改进YOLOv8的水面小目标检测算法. 计算机系统应用, 2024, 33(4): 152–161.
    [18] Liu S, Qi L, Qin H, et al. Path aggregation network for instance segmentation. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018. 8759–8768.
    [19] 刘建政, 梁鸿, 崔学荣, 等. 融入特征融合与特征增强的SSD目标检测. 计算机工程与应用, 2022, 58(11): 150–159.
    [20] Han K, Wang YH, Tian Q, et al. GhostNet: More features from cheap operations. Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Seattle: IEEE, 2020. 1577–1586.
    [21] He KM, Zhang XY, Ren SQ, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(9): 1904–1916.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

肖阳,项明宇,李熹.基于改进YOLOv8n的轻量化柑橘成熟度检测.计算机系统应用,2024,33(11):202-208

Copy
Share
Article Metrics
  • Abstract:143
  • PDF: 952
  • HTML: 568
  • Cited by: 0
History
  • Received:April 01,2024
  • Revised:May 06,2024
  • Online: September 27,2024
Article QR Code
You are the first990401Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063