PM2.5 Concentration Prediction Based on VE-GEP Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Accurate prediction of PM2.5 concentration is essential for public health and environmental protection, but its nonlinearity, variability, and complexity make it difficult. Based on this, this study proposes a gene expression programming algorithm based on virus evolution (VE-GEP) to predict PM2.5 concentration in response to the shortcomings of traditional GEP. The algorithm introduces a resurrection mechanism and a mutagenic restart mechanism based on GEP. The resurrection mechanism removes poor-quality individuals from the population and improves individual quality in the population. The mutagenic restart mechanism increases population diversity and enhances algorithm optimization-seeking ability by introducing high-quality genes and new individuals. Experimental results show that the VE-GEP algorithm improves the prediction models to different degrees compared to GEP, DSCE-GEP, and CNN-LSTM in spring, summer, and fall, with improvements in the fitness of 1.28%/0.1%/0.13%, 1.86%/1.29%/0.42%, and 0.57%/0.24%/0.29%, respectively, which provides new ideas and methods for PM2.5 concentration prediction studies.

    Reference
    Related
    Cited by
Get Citation

王超学,邹飞.基于VE-GEP算法的PM2.5浓度预测.计算机系统应用,2024,33(11):194-201

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 30,2024
  • Revised:May 20,2024
  • Adopted:
  • Online: September 24,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063