Elevator Risk Prediction Based on Deep Survival Analysis and SHAP
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a comprehensive solution that combines deep survival analysis, data segmentation, and data imputation to address the issue of statistical predictive maintenance for elevators, which is characterized by low frequency and irregular time periods. This study establishes both dynamic and static survival vectors to capture factors influencing major fault risks. Additionally, to tackle left censoring in recorded data, this research employs data imputation and explores the impact of different imputation methods and segmentation strategies on the accuracy of deep survival models. Finally, this study utilizes SHAP to analyze deep survival models in elevators to reveal the dynamic influence of various factors on fault risks. The results indicate that a model combining rough data segmentation with Cox imputation demonstrates strong predictive capability and accuracy. The DeepSurv model excels in predictive capability and stability. The contribution of factors such as elevator age and lifting height to major fault risks can shift under specific conditions.

    Reference
    Related
    Cited by
Get Citation

曾倩欣,王槃,杨欢,杨勇.基于深度生存分析与SHAP的电梯风险预测.计算机系统应用,2024,33(11):247-256

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 21,2024
  • Revised:May 20,2024
  • Adopted:
  • Online: September 24,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063