Large-scale Multi-objective Optimization Algorithm with Multiple Strategies
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    When dealing with large-scale multi-objective optimization problem (LSMOP), the MOEA/D algorithm shows poor scalability in the decision space and a tendency to converge to local optima as the dimensionality of decision variables increases. To address this issue, this study proposes a large-scale MOEA/D algorithm with multiple strategies (MSMOEA/D). The MSMOEA/D algorithm introduces a hybrid initialization strategy based on autoencoders in the optimization process to expand the coverage of the initial population, thus promoting global search. Moreover, a neighborhood adjustment strategy based on aggregation functions is proposed, which can more accurately control the search range during the search process by adjusting neighborhood sizes, thereby avoiding low search efficiency caused by excessively large or small neighborhoods. Furthermore, a mutation-selection strategy based on non-dominated sorting is adopted during the optimization process. Different subproblems select their mutation strategies according to the number of individuals in the first level of non-dominated sorting to avoid the population falling into local optima and enhance the overall performance of the algorithm. Finally, the MSMOEA/D algorithm and other existing algorithms are evaluated using LSMOP and DTLZ test problems. Experimental results verify the effectiveness of the proposed algorithm for solving LSMOPs.

    Reference
    Related
    Cited by
Get Citation

裴倩如,邹锋,陈得宝.多策略大规模多目标优化算法.计算机系统应用,2024,33(11):142-156

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 19,2024
  • Revised:May 14,2024
  • Adopted:
  • Online: September 29,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063