Identification System of Cancer Driver Genes Based on Graph Autoencoder and LightGBM
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    Cancer driver genes play a crucial role in the formation and progression of cancer. Accurate identification of cancer driver genes contributes to a deeper understanding of the mechanisms underlying cancer development and advances precision medicine. To address the heterogeneity and complexity challenges in the current field of cancer driver gene identification, this study presents the design and implementation of a cancer driver gene identification system, ACGAI, based on graph autoencoder and LightGBM. The system initially employs unsupervised learning with a graph autoencoder to grasp the complex topological structure of the biomolecular network. Subsequently, the generated embedding representations are concatenated with original gene features, forming gene-enhanced features input into LightGBM. After training, the system outputs predictive scores for each gene on the biomolecular network, achieving accurate identification of cancer driver genes. Finally, the system utilizes Web technology to create a user-friendly and highly interactive visualization interface, enabling cancer driver gene identification in the context of gene set analysis and providing biological interpretation for the identification results. Through rigorous testing, the system exhibits superior identification performance compared to other methods, demonstrating its effectiveness in identifying cancer driver genes.

    Reference
    Related
    Cited by
Get Citation

谢兵,苏波.基于图自编码器与LightGBM的癌症驱动基因识别系统.计算机系统应用,2024,33(10):87-96

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 06,2024
  • Revised:May 06,2024
  • Online: August 28,2024
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063