Road Recognition in Remote Sensing Images Using SegFormer Fused with Attention Mechanism
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Road information is of great significance and value in remote sensing images, and thus the accurate extraction of roads is crucial for many applications. However, there are two main challenges in road recognition. Firstly, the background of satellite images is complex and diverse, while the morphology of roads is also complex and diverse, which poses a challenge to automatic road recognition. Secondly, road pixels only account for a small portion of the entire image, leading to class imbalance. To address these challenges, this study proposes an automatic road recognition algorithm based on an improved SegFormer model. The algorithm employs two main strategies to improve the recognition performance. Firstly, spatial attention modules are added to the output of each stage of the SegFormer encoder. This module helps to weaken the interference from complex backgrounds and enhance the attention to road areas. By introducing spatial attention mechanisms, the model can better capture the features of roads, thereby improving recognition accuracy. Secondly, a hybrid loss function that combines pixel contrast loss and cross-entropy loss is used. Such a loss function can better handle class imbalance problems and make the model place more focus on training road categories. By optimizing the training process, the model can better learn road feature representation, thereby improving recognition accuracy. Comparative experimental analysis shows that the improved model achieves an approximate 3.3% improvement in the mIoU metric on the test set.

    Reference
    Related
    Cited by
Get Citation

王晓杰,陈少康,闫皓炜,杨鹤猛,燕正亮,王森.融合注意力机制的SegFormer遥感影像道路识别.计算机系统应用,2024,33(11):186-193

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 02,2024
  • Revised:April 29,2024
  • Adopted:
  • Online: September 24,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063