Deep Learning for Short-term Precipitation Prediction Integrating Multi-source Data
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This study proposes a deep learning model for short-term precipitation forecasting, called MSF-Net, to address the limitations of traditional methods. This model integrates multi-source data, including GPM historical precipitation data, ERA5 meteorological data, radar data, and DEM data. A meteorological feature extraction module is employed to learn the meteorological features of the multi-source data. An attention fusion prediction module is used to achieve feature fusion and short-term precipitation forecasting. The precipitation forecasting results of MSF-Net are compared with those of various artificial intelligence methods. Experimental results indicate that MSF-Net achieves optimal threat score (TS) and bias score (Bias). This suggests that it can enhance the effectiveness of data-driven precipitation forecasting within a 6 h prediction horizon.

    Reference
    Related
    Cited by
Get Citation

夏景明,戴如晨,谈玲.融合多源数据的深度学习短时降水预测.计算机系统应用,2024,33(8):123-131

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 02,2024
  • Revised:February 23,2024
  • Adopted:
  • Online: June 28,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063