Brain Tumor Image Segmentation Based on Asymmetric U-shaped Convolutional Neural Network
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In computer vision segmentation, the Transformer-based image segmentation model needs a large amount of image data to achieve the best performance. However, the data volume of medical images is very scarce compared with natural images. Convolution, with its higher inductive bias, is more suitable for medical images. To combine the long-range representation learning of Transformer with the inductive bias of CNN, a residual ConvNeXt module is designed to simulate the design structure of Transformer in this research. The module, composed of deep convolution and point wise convolution, is used to extract feature information, which greatly reduces the number of parameters. The receptive field and feature channel are effectively scaled and expanded to enrich the feature information. In addition, an asymmetric 3D U-shaped network called ASUNet is proposed for the segmentation of brain tumor images. In the asymmetric U-shaped structure, the output features of the last two encoders are connected by residual connection to expand the number of channels. Finally, deep supervision is used in the process of upsampling, which promotes the recovery of semantic information. Experimental results on the BraTS 2020 and FeTS 2021 datasets show that the dice scores of ET, WT, and TC reach 77.08%, 90.83%, 83.41%, and 75.63%, 90.45, 84.21%, respectively. Comparative experiments show that ASUNet can fully compete with Transformer-based models in terms of accuracy while maintaining the simplicity and efficiency of standard convolutional neural networks.

    Reference
    Related
    Cited by
Get Citation

刘盼盼,安典龙,丰艳.基于非对称U型卷积神经网络的脑肿瘤图像分割.计算机系统应用,2024,33(8):196-204

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 23,2024
  • Revised:March 05,2024
  • Adopted:
  • Online: July 03,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063