Dual Debiased Collaborative Filtering Recommendation Algorithm Suitable for Sparse Implicit Feedback Data
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Implicit feedback data plays a crucial role in recommender systems, but it often suffers from sparsity and biases, including exposure bias and conformity bias. Existing debiasing methods tend to address only one type of bias, which can impact personalized recommendation effectiveness, or require a expensive debiased dataset as auxiliary information for multiple debiasing. To address this issue, a collaborative filtering recommendation algorithm specifically designed for sparse implicit feedback data, which can simultaneously debias exposure bias and conformity bias, is proposed. The algorithm utilizes the proposed dual inverse propensity weighting method and a contrastive learning auxiliary task to remove the two biases contained in the implicit feedback data which are input into dual-tower autoencoders so that the complete algorithm can estimate users’ preference probability to items. Experimental results demonstrate that the proposed algorithm outperforms comparative algorithms in terms of normalized discounted cumulative gain (NDCG@K), mean average precision (MAP@K), and recall (Recall@K) on publicly available debiased datasets such as Coat and Yahoo!R3.

    Reference
    Related
    Cited by
Get Citation

丁雨辰,徐建军,崔文泉.适用于稀疏隐式反馈数据的双重去偏协同过滤推荐算法.计算机系统应用,2024,33(8):145-154

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 29,2024
  • Revised:March 28,2024
  • Adopted:
  • Online: July 03,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063