Entity Recognition for Interpretation of Bone-sign Integrated with Multiple Features
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    This study constructs a named entity recognition (NER) model suitable for the bone-sign interpretations of Han Chang’an City to solve the problem of the inability to classify some bone-sign interpretations due to the lack of key content. The original text of the bone-sign interpretations of Han Chang’an City is used as the dataset, and the begin, inside, outside, end (BIOE) annotation method is utilized to annotate the bone-sign interpretation entities. A multi-feature fusion network (MFFN) model is proposed, which not only considers the structural features of individual characters but also integrates the structural features of character-word combinations to enhance the model’s comprehension of the bone-sign interpretations. The experimental results demonstrate that the MFFN model can better identify the named entities of the bone-sign interpretations of Han Chang’an City and classify the bone-sign interpretations, outperforming existing NER models. This model provides historians and researchers with richer and more precise data support.

    Reference
    Related
    Cited by
Get Citation

石雨梦,王慧琴,王展,刘瑞,王可.融合多特征的骨签释文实体识别.计算机系统应用,2024,33(9):38-47

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 05,2024
  • Revised:April 03,2024
  • Online: July 26,2024
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063