Abstract:Effective segmentation of clouds and their shadows is a critical issue in the field of remote sensing image processing. It plays a significant role in surface feature extraction, climate detection, atmospheric correction, and more. However, the complex features of clouds and cloud shadows in remote sensing images, characterized by their diverse, irregular distributions and fuzzy boundary information that is easily disturbed by the background, make accurate feature extraction challenging. Moreover, there are few networks specifically designed for this task. To address these issues, this study proposes a dual-path network combining vision Transformer (ViT) and D-UNet. The network is divided into two branches: one is a convolutional local feature extraction module based on the dilated convolution module of D-UNet, which introduces a multi-scale atrous spatial pyramid pooling (ASPP) to extract multi-dimensional features; the other branch comprehends the context semantics globally through the vision Transformer, enhancing feature extraction. Finally, the study performs an upsampling through a feature fusion decoder. The model achieves superior performance on both a self-built dataset of clouds and cloud shadows and the publicly available HRC_WHU dataset, leading the second-best model by 0.52% and 0.44% in the MIoU metric, achieving 92.05% and 85.37%, respectively.