Abstract:Semantic segmentation of remote sensing images plays a crucial role in environmental detection, land cover classification, and urban planning. Convolutional neural networks and their improved models are the mainstream methods for semantic segmentation of remote sensing images. However, these methods focus more on learning local contextual features and cannot effectively model the global distribution relationship between different objects, thereby restricting the segmentation performance of the model. To address this issue, this study constructs a global semantic relationship learning module based on convolutional neural networks, which fully learns the symbiotic relationships between different objects and effectively enhances the model’s representation ability. In addition, a multi-scale relationship learning module is constructed to integrate global semantic relationships of different scales, given the scale differences of the objects to be segmented in the same scene. To evaluate the performance of the model, sufficient experiments are conducted on two commonly used remote sensing image datasets, Vaihingen and Potsdam. The experimental results show that the proposed method can achieve higher segmentation performance than existing models based on convolutional neural networks.