Object Detection Based on YOLOv5-MobileNetV3 Algorithm
CSTR:
Author:
  • Article
  • | |
  • Metrics
  • |
  • Reference [28]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The detection speed and accuracy of detecting targets ahead during vehicle operation have always been a focus of research in the field of autonomous driving. For existing object detection algorithm models, in complex traffic environments, traditional models are prone to false positives and missed detections when facing overlapping targets. Significantly improving detection accuracy can also lead to increased computational demands, resulting in slower processing speed and decreased real-time performance. This article proposes an improved algorithm based on the YOLOv5 model. Firstly, the MobileNetV3 network is adopted to replace the C3 backbone network in the original model, achieving a lightweight network while improving the model’s response speed. Secondly, a non-maximum suppression algorithm, Adaptive-EIoU-NMS, is proposed to improve the recognition accuracy of overlapping targets. Finally, the K-means++ clustering algorithm is used to replace the original clustering algorithm and generate more accurate anchor boxes. Experimental results show that the improved model achieves an average detection accuracy of 90.1% and a detection speed of 89 frames per second (f/s). The experimental results confirm that the enhanced model significantly improves both detection accuracy and speed for complex scene detection.

    Reference
    [1] 李川鹏, 郭宇辰. 浅析自动驾驶技术发展现状、趋势及挑战. 时代汽车, 2022(14): 4–6.
    [2] 李柯泉, 陈燕, 刘佳晨, 等. 基于深度学习的目标检测算法综述. 计算机工程, 2022, 48(7): 1–12.
    [3] 肖久源, 吴芳榕. 自动驾驶汽车中视觉技术的应用. 汽车测试报告, 2022(19): 43–45.
    [4] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science, 2006, 313(5786): 504–507.
    [5] Girshick R. Fast R-CNN. Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV). Santiago: IEEE, 2017. 1440–1448.
    [6] Ren SQ, He KM, Girshick R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137–1149.
    [7] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus: IEEE, 2014. 580–587.
    [8] Tian Y, Gelernter J, Wang X, et al. Lane marking detection via deep convolutional neural network. Neurocomputing, 2018, 280: 46–55.
    [9] Redmon J, Divvala S, Girshick R, et al. You only look once: Unified, real-time object detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016. 779–788.
    [10] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector. Proceedings of the 14th European Conference on Computer Vision. Amsterdam: Springer, 2016. 21–37.
    [11] 潘卫华, 罗裕坤. 基于改进YOLOv3的车辆目标检测. 计算机应用与软件, 2023, 40(1): 167–172, 204.
    [12] 杨志军, 昌新萌, 丁洪伟. 基于改进YOLOv4-Tiny的交通车辆实时目标检测. 无线电工程, 2023, 53(11): 2635–2644.
    [13] 郭磊, 王邱龙, 薛伟, 等. 基于改进YOLOv5的小目标检测算法. 电子科技大学学报, 2022, 51(2): 251–258.
    [14] 邵延华, 张铎, 楚红雨, 等. 基于深度学习的YOLO目标检测综述. 电子与信息学报, 2022, 44(10): 3697–3708.
    [15] 王鹏飞, 黄汉明, 王梦琪. 改进YOLOv5的复杂道路目标检测算法. 计算机工程与应用, 2022, 58(17): 81–92.
    [16] Howard A, Sandler M, Chen B, et al. Searching for MobileNetV3. Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Seoul: IEEE, 2020. 1314–1324.
    [17] Elsken T, Metzen JH, Hutter F. Neural architecture search: A survey. The Journal of Machine Learning Research, 2019, 20(1): 1997–2017.
    [18] Tan MX, Chen B, Pang RM, et al. MnasNet: Platform-aware neural architecture search for mobile. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2018. 2815–2823.
    [19] Yang TJ, Howard A, Chen B, et al. NetAdapt: Platform-aware neural network adaptation for mobile applications. Proceedings of the 15th European Conference on Computer Vision. Munich: Springer, 2018. 289–304.
    [20] Neubeck A, Van Gool LJ. Efficient non-maximum suppression. Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong: IEEE, 2006. 850–855.
    [21] 李建新, 陈厚权, 范文龙. 基于改进YOLOv5的遥感图像目标检测研究. 计算机测量与控制, 2023, 31(9): 102–108, 115.
    [22] 杨睿宁, 惠飞, 金鑫, 等. 改进YOLOv5s的复杂交通场景路侧目标检测算法. 计算机工程与应用, 2023, 59(16): 159–169.
    [23] Liu ST, Huang D, Wang YH. Adaptive NMS: Refining pedestrian detection in a crowd. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach: IEEE, 2019. 6452–6461.
    [24] 杨昊瑜, 戴华林, 王丽, 等. 基于K-means的ORB算法在前方车辆识别中的应用. 传感器与微系统, 2020, 39(10): 157–160.
    [25] 吴丽娟, 黄尧, 关贵明. 基于改进YOLOv5的道路目标检测. 沈阳师范大学学报 (自然科学版), 2023, 41(1): 85–91.
    [26] Liu BK, He FJ, Du SQ, et al. An advanced YOLOv3 method for small object detection. Journal of Intelligent and Fuzzy Systems, 2023, 45(4): 5807–5819.
    [27] Bochkovskiy A, Wang CY, Liao HYM. YOLOv4: Optimal speed and accuracy of object detection. arXiv:2004.10934, 2020.
    [28] 郎磊, 刘宽, 王东. 基于YOLOX-Tiny的轻量级遥感图像目标检测模型. 激光与光电子学进展, 2023, 60(2): 353–363.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

曲英伟,刘锐.基于YOLOv5-MobileNetV3算法的目标检测.计算机系统应用,2024,33(7):213-221

Copy
Share
Article Metrics
  • Abstract:417
  • PDF: 959
  • HTML: 662
  • Cited by: 0
History
  • Received:February 05,2024
  • Revised:March 05,2024
  • Online: June 05,2024
Article QR Code
You are the first990404Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063