Image Segmentation of SOFC Surface Defects with Fused Self-attention
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The image segmentation of surface defects on solid oxide fuel cell (SOFC) is of great significance for the quality inspection of monolithic SOFC. Aiming at the problems of blurred edges and complex backgrounds of surface defect images of monolithic SOFC, this study proposed a self-attention fusion method for SOFC surface defect image segmentation. Firstly, a multi-channel self-attention module is proposed to enhance the inter-channel correlation and improve the channel representation. Secondly, a multi-scale attention fusion module is utilized to further improve the network’s ability to extract defect features at different scales; and finally, a triplet joint loss function is proposed to supervise the training process. Experiments show that the proposed method can effectively extract surface defects of monolithic SOFC while improving network segmentation performance.

    Reference
    Related
    Cited by
Get Citation

汪尧坤,付晓薇,李曦,徐威.融合自注意力的SOFC表面缺陷图像分割.计算机系统应用,2024,33(8):108-114

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 06,2024
  • Revised:March 05,2024
  • Adopted:
  • Online: June 28,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063