Image Denoising Network Fusing with CNN and Transformer
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The current image denoising algorithms based on deep learning are unable to consider the local and global feature information comprehensively, which in turn affects the image denoising effect at the details. To address this problem, this study proposes a hybrid CNN and Transformer image denoising network (HCT-Net). First, CNN and Transformer coupling block (CTB) is proposed to construct a two-branch structure that integrates convolution and channel self-attention to alleviate the high computational overhead caused by relying solely on the Transformer. At the same time, the attention weights are dynamically allocated so that the network focuses on important feature information. Secondly, the self-attention enhanced convolution module (SAConv) is designed to adopt the progressive combination of modules and nonlinear transformations to attenuate the noise signal interference and identify local features under complex noise levels. Experimental results on six benchmark datasets show that HCT-Net has better feature perception ability than some current advanced denoising methods and can suppress high-frequency noise signals to recover the edge and detail information of images.

    Reference
    Related
    Cited by
Get Citation

姜文涛,卜艺凡.融合CNN和Transformer的图像去噪网络.计算机系统应用,2024,33(7):39-51

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 08,2024
  • Revised:February 04,2024
  • Adopted:
  • Online: June 05,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063