Decision Method for Processes of Parts Machining Features Driven by Data and Knowledge
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In the process planning stage of parts, the generated process schemes strongly depend on the process knowledge selected and applied by designers. However, due to the many deviations between the actual manufacturing logics and the process knowledge selected by designers, the mismatch between the generated process scheme and the actual process has become a problem of concern in the current parts manufacturing field. This study proposes a decision method for processes of machining features driven by data and knowledge to solve the above problems. In this method, an MLP deep learning algorithm based on an attention mechanism is utilized to mine process knowledge from structured process data and correlate machining features with feature process labels. After data processing, the method is applied to train a neural network model. After verification, the method can take the feature process data of parts as input and output the distributions of corresponding feature process labels, providing decision support for the generation of the process scheme of parts.

    Reference
    Related
    Cited by
Get Citation

方舟,黄瑞,黄波,蒋俊锋,韩泽凡.数据与知识驱动的零件特征工艺决策方法.计算机系统应用,2024,33(6):177-184

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 28,2023
  • Revised:January 29,2024
  • Adopted:
  • Online: April 30,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063