Degraded Calligraphic Document Binarization Based on Multidimensional Side Window Clustering Segmentation
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The distribution of grayscale values in calligraphic character document images exhibits significant variations under poor lighting conditions, resulting in lower image contrast in low-light areas and degradation of morphological texture features of the strokes. Traditional methods typically focus on local information such as mean, squared deviation, and entropy, while giving less consideration to morphological texture, rendering them insensitive to the features of low-contrast areas. To address these issues, this study proposes a binarization method called clustering segmentation-based side-window filter (CS-SWF) specifically designed for degraded calligraphic documents. Firstly, this method utilizes multi-dimensional SWF to describe pixel chunks with similar morphological features. Then, with multiple correction rules, it utilizes downsampling to extract low-latitude information and correct feature regions. Finally, the clustered blocks in the feature map are classified to obtain the binarization results. To evaluate the performance of the proposed method, it is compared with existing methods using F-measure (FM), peak signal-to-noise ratio (PSNR), and distance reciprocal distortion (DRD) as indicators. Experimental results on a self-constructed dataset consisting of 100 handwritten degraded document images demonstrate that the proposed binarization method exhibits greater stability in low-contrast dark regions and outperforms the comparison algorithm in terms of accuracy and robustness.

    Reference
    Related
    Cited by
Get Citation

徐占洋,张家瑞,侍虹言,秦飞扬,林巍.基于多维侧窗聚类分块的退化书法文档二值化.计算机系统应用,2024,33(6):223-231

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 20,2023
  • Revised:January 17,2024
  • Adopted:
  • Online: April 19,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063