Land Cover Classification of Time-series SAR Images Using Mult-TWDTW Algorithm
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Synthetic aperture radar (SAR) images provide an important time-series data source for land cover classification. The existing time-series matching algorithms can fully exploit the similarity among time-series features to obtain satisfactory classification results. In this study, the classic time-series matching algorithm named time-weighted dynamic time warping (TWDTW), which comprehensively considers shape similarity and phenological differences, is introduced to guide SAR-based land cover classification. To solve the problem that the traditional TWDTW algorithm only considers the similarity matching of a single feature on the time series, this study proposes a multi-feature fusion-based TWDTW (Mult-TWDTW) algorithm. In the proposed method, three features, namely, the backscattering coefficient, interferometric coherence, and the dual-polarization radar vegetation index (DpRVI), are extracted, and the Mult-TWDTW model is designed by fusing multiple features based on the TWDTW algorithm. To verify the effectiveness of the proposed method, the study implements land cover classification in the Danjiangkou area using time-series data obtained from the Sentinel-1A satellite. Then, the Mult-TWDTW algorithm is compared with the multi-layer perception (MLP), one-dimensional convolutional neural network (1D-CNN), K-means, and support vector machine (SVM) algorithms as well as the TWDTW algorithm using a single feature. The experimental results show that the Mult-TWDTW algorithm obtains the best classification results, manifested as its overall accuracy and Kappa coefficient reaching 95.09% and 91.76, respectively. In summary, the Mult-TWDTW algorithm effectively fuses the information of multiple features and can enhance the potential of time-series matching algorithms in the classification of multiple types of land covers.

    Reference
    Related
    Cited by
Get Citation

孟萌萌,黄瑞瑞,毋琳,黄亚博.基于Mult-TWDTW算法的时序SAR图像土地覆盖分类.计算机系统应用,2024,33(5):203-209

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 01,2023
  • Revised:December 20,2023
  • Adopted:
  • Online: April 07,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063