Abstract:Mixed sample data enhancement methods focus only on the model’s forward representation of the category to which the image belongs while ignoring the reverse determination of whether the image belongs to a specific category. To address the problem of uniquely describing image categories and affecting model performance, this study proposes a method of image data augmentation with inverse target interference. To prevent overfitting of the network model, the method first modifies the original image to increase the diversity of background and target images. Secondly, the idea of reverse learning is adopted to enable the network model to correctly identify the category that the original image belongs to while fully learning the attributes of the populated image that do not belong to that category to increase the confidence of the network model in identifying the category that the original image belongs to. In conclusion, to verify the method’s effectiveness, the study utilizes different network models to perform many experiments on five datasets including CIFAR-10 and CIFAR-100. Experimental results show that compared to other state-of-the-art data augmentation methods, the proposed method can significantly enhance the model’s learning effect and generalization ability in complex settings.