Grasping Detection Network of Multi-scale Attention Feature Fusion in Cluttered Scenes
CSTR:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    GSNet relies on graspness to distinguish graspable areas in cluttered scenes, which significantly improves the accuracy of robot grasping pose detection in cluttered scenes. However, GSNet only uses a fixed-size cylinder to determine the grasping pose parameters and ignores the influence of features of different sizes on grasping pose estimation. To address this problem, this study proposes a multi-scale cylinder attention feature fusion module (Ms-CAFF), which contains two core modules: the attention fusion module and the gating unit. It replaces the original feature extraction method in GSNet and uses an attention mechanism to effectively integrate the geometric features inside the four cylinders of different sizes, thereby enhancing the network’s ability to perceive geometric features at different scales. The experimental results on GraspNet-1Billion, a grabbing pose detection dataset for large-scale cluttered scenes, show that after the introduction of the modules, the accuracy of the network’s grasping poses is increased by up to 10.30% and 6.65%. At the same time, this study applies the network to actual experiments to verify the effectiveness of the method in real scenes.

    Reference
    Related
    Cited by
Get Citation

徐衍,林云汉,闵华松.杂乱场景中多尺度注意力特征融合抓取检测网络.计算机系统应用,2024,33(5):76-84

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 13,2023
  • Revised:December 11,2023
  • Adopted:
  • Online: April 01,2024
  • Published:
Article QR Code
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-3
Address:4# South Fourth Street, Zhongguancun,Haidian, Beijing,Postal Code:100190
Phone:010-62661041 Fax: Email:csa (a) iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063